레이블이 cell-free DNA인 게시물을 표시합니다. 모든 게시물 표시
레이블이 cell-free DNA인 게시물을 표시합니다. 모든 게시물 표시

금요일, 5월 23, 2025

비침습적 방법의 질병 모니터링, cfDNA

오늘은 금년 3월에 나온 따끈따끈한 cfDNA에 대한 논문을 가져와봤습니다. cell-free DNA를 사용하여 조기 암진단에 사용한다라는.... 이미 많이 활용하고 있는 내용이긴 합니다. :)

제목은 Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection 입니다. cfDNA는 이미 많은 부분에서 널리 활용되고 있는 녀석이긴하죠. cfDNA만!! 으로는 조금 어렵지 않나싶은 생각도 드는데... 물론 이 또한 똑똑하신 형님들께서 해결을 하지 않을까합니다. :)

DOI: 10.1038/s41568-025-00795-x



clova-x

세포유리 DNA (cfDNA)의 유전체 및 조각체 분석은 비침습적 혈액 기반 바이오마커로 암 탐지 및 질병 모니터링을 가능하게 하여 조기 암 발견에 큰 잠재력을 가지고 있습니다. 이러한 분석은 기존의 표적화된 방법보다 더 넓은 범위의 유전적 특성을 조사할 수 있어, 다양한 임상 응용 분야에서의 발전을 촉진하고 있습니다.

1. **cfDNA의 특성과 분석 방법**

   - cfDNA는 혈액, 침, 소변 등 여러 체액에서 발견되며, 주로 뉴클레오솜에서 유래합니다.

   - 분석 방법으로는 표적화된 시퀀싱과 전 유전체 시퀀싱이 있으며, 각각의 장단점이 존재합니다.

2. **조기 암 발견을 위한 cfDNA의 활용**

   - cfDNA의 변화는 암 세포의 유전자 및 에피지네틱 변형을 반영하며, 이를 통해 조기 암 발견이 가능합니다.

   - 머신 러닝을 통한 복합 특징 분석은 높은 민감도로 암을 탐지할 수 있는 잠재력을 가지고 있습니다.

3. **현재의 도전과 기회**

   - cfDNA 기반 검사는 비용과 접근성 측면에서 여전히 개선이 필요하며, 광범위한 인구에 적용하기 위한 연구가 진행 중입니다.

   - 조기 발견을 통한 치료 효과 향상을 위해 cfDNA 검사의 실용성과 효과성에 대한 평가가 이루어지고 있습니다.



chatGPT

# 🧬 혈액 속 DNA로 암을 찾는 시대 – cfDNA 이야기

안녕하세요! 오늘은 과학이 얼마나 멋진지를 보여주는 흥미로운 내용을 가져왔어요. 바로 ‘cfDNA(세포유리 DNA)’를 이용해서 암을 조기 발견하고 건강 상태를 체크하는 기술에 대한 이야기예요. 고등학생 여러분도 쉽게 이해할 수 있도록 최대한 쉬운 말로 설명해볼게요 😊

---

## cfDNA가 뭐예요?

우리 몸의 세포는 살아가면서 자연스럽게 죽기도 해요. 이때 세포 안에 있던 DNA 조각들이 혈액 속으로 흘러나오게 되는데, 이걸 **cfDNA (cell-free DNA)**라고 불러요. 말 그대로 **‘세포 밖에 떠다니는 DNA’**라는 뜻이죠!

그런데! 만약 몸속 어딘가에 **암세포**가 있다면, 그 암세포가 죽을 때 나오는 DNA도 함께 혈액에 섞이게 돼요. 이걸 **ctDNA(암세포에서 나온 cfDNA)**라고 불러요.

---

## 혈액으로 암을 찾는다고요?

네, 맞아요! 과학자들은 이 cfDNA를 분석해서 **암세포의 흔적**을 찾아내는 기술을 개발하고 있어요. 피 한 방울로도 암을 조기에 알아낼 수 있다는 거죠! 아주 편리하고, 고통도 적고, 검사도 빠르게 할 수 있어서 큰 주목을 받고 있어요.

---

## cfDNA를 분석하는 방법은?

크게 두 가지 방법이 있어요:

### 1. 🎯 **특정 유전자만 골라 분석하기 (타겟 방식)**

암과 관련된 특정 유전자가 있는지 깊게 들여다보는 방법이에요.

- 장점: 정확도가 높고, 이미 알려진 암 유전자에 집중할 수 있어요.

- 단점: cfDNA 중 아주 일부만 분석하니까 놓치는 정보도 많아요.

### 2. 🌌 **전체 DNA를 넓게 살펴보기 (전체 유전체 방식)**

cfDNA 전체를 분석하면서, DNA가 어떻게 잘렸는지, 어디서 왔는지까지 알아내는 방법이에요.

- 장점: 새로운 암 신호도 찾을 수 있고, 암 종류까지 추측할 수 있어요!

- 단점: 분석이 복잡하고 AI(인공지능)의 도움이 필요해요.

---

## 이게 왜 대단한가요?

현재 우리가 받는 암 검진은 대부분 병원에서 기계로 찍는 방식이에요. 예를 들어 폐암은 CT 찍고, 대장암은 내시경을 하죠. 하지만 이건 시간이 오래 걸리고, 고통스럽기도 하고, 비용도 많이 들어요.

cfDNA 검사는 **간단한 채혈**로 가능하고, 아직 증상이 없을 때도 암을 찾아낼 수 있어요. 특히 암에 걸릴 확률이 높은 사람에게 큰 도움이 될 수 있죠.

---

## cfDNA는 암 말고도 쓸 수 있어요!

- **치료 효과 확인**: 항암제가 잘 듣고 있는지 cfDNA를 보면 알 수 있어요.

- **암이 재발했는지 감시**: 암이 완치된 줄 알았는데 다시 생겼을 때, cfDNA로 빨리 알아낼 수 있어요.

- **기타 질병**: 암 외에도 cfDNA는 유전병이나 염증성 질환 등을 감지하는 데도 쓰일 수 있어요.

---

## 마무리하며…

cfDNA는 작은 피 한 방울에 담긴 **우리 몸의 이야기**예요. 아직도 연구 중인 부분이 많지만, 머지않아 건강검진 받을 때 “피 한 방울로 암 검사하셨어요?”라는 말이 일상화될지도 몰라요!

과학의 발전이 사람들을 더 건강하고 안전하게 만들어주는 모습을 보니 정말 멋지지 않나요? 💡



NotebookLM

## 우리 몸속 떠다니는 암 조각, cfDNA로 암을 잡는다?! (고등학생 대상)

여러분, 혹시 우리 몸을 이루는 세포들이 수명을 다하거나 손상되면 어떻게 될까요? 간단히 말해, 그 세포들은 부서지고, 그 안에 있던 DNA 조각들이 우리 몸의 여러 곳으로 흘러나오게 돼요. 마치 레고 블록이 부서져 조각들이 흩어지는 것과 비슷하죠. 이렇게 **세포 밖으로 나와 떠다니는 DNA 조각**들을 바로 **cfDNA (cell-free DNA, 세포유리 DNA)**라고 부릅니다.

최근 과학 기술의 발전으로 이 cfDNA를 아주 정밀하게 분석할 수 있게 되면서, 놀라운 사실들이 밝혀지고 있어요. 특히 암과 관련된 연구에서 cfDNA는 아주 중요한 역할을 하고 있답니다! 오늘 우리가 함께 살펴볼 연구는 바로 이 **cfDNA가 다양한 임상 분야에서 어떻게 활용될 수 있는지**에 대한 내용이에요. 마치 우리 몸의 작은 단서를 통해 큰 병을 알아낼 수 있는 비밀 열쇠 같은 존재라고 할 수 있죠!

### 암세포가 남기고 간 흔적, ctDNA

특히 암 환자의 몸에서는 **암세포가 죽거나 손상될 때 cfDNA의 일종인 ctDNA (circulating tumor DNA, 순환 종양 DNA)**라는 특별한 DNA 조각들이 혈액 속에 흘러나오게 돼요. 이 ctDNA 안에는 암세포만이 가지고 있는 **돌연변이, DNA 메틸화 변화, 염색체 구조 이상** 등의 특징들이 담겨 있어서, 마치 범죄 현장에 남겨진 범인의 지문처럼 암을 진단하고 추적하는 데 아주 유용하게 사용될 수 있답니다.

### cfDNA 분석, 어떻게 암을 찾아낼까?

과학자들은 혈액 속의 cfDNA를 분석하기 위해 크게 두 가지 방법을 사용해요.

*   **표적 분석 (Targeted approach):** 암과 관련 있다고 알려진 **특정 유전자 부위**의 DNA 변화 (돌연변이, 메틸화 등)를 집중적으로 살펴보는 방법이에요. 마치 특정 범죄자의 지문이 찍힌 증거물을 찾는 것과 비슷하죠. 이 방법은 암이 이미 진단된 환자의 치료 반응을 모니터링하거나, 특정 유전자 변이가 있는 환자를 선별하는 데 효과적이에요. 예를 들어, 암 치료에 사용되는 특정 약물에 반응하는 환자를 ctDNA 분석을 통해 미리 알 수 있는 거죠.

*   **전장 유전체 분석 (Genome-wide approach):** **유전체 전체**의 cfDNA 조각들을 분석하여 암세포에서 나타나는 다양한 변화들을 종합적으로 파악하는 방법이에요. 마치 범죄 현장 전체를 샅샅이 뒤져 모든 단서를 찾는 것과 같아요. 이 방법은 암의 초기 진단, 특히 어떤 종류의 암인지, 어느 부위에서 시작되었는지 등을 예측하는 데 잠재력이 크답니다. 최근에는 **인공지능 (AI)** 기술을 접목하여 이 방대한 데이터를 분석하고 암을 더 정확하게 진단하려는 연구가 활발히 진행되고 있어요.

### cfDNA, 암과의 싸움에서 어떻게 활용될까?

이 연구에 따르면, cfDNA 분석은 다양한 임상 분야에서 아주 유용하게 활용될 수 있다고 해요. 마치 여러 가지 기능을 가진 스마트 도구와 같은 역할을 하는 거죠!

*   **치료법 결정 (Therapeutic stratification):** 암 환자에게 어떤 치료법이 가장 효과적일지 미리 예측하는 데 도움을 줄 수 있어요. ctDNA에 있는 특정 유전자 변이를 분석해서, 그 변이에 맞는 표적 치료제를 선택하거나, 치료 반응을 예측할 수 있는 거죠.

*   **질병 모니터링 (Disease monitoring):** 암 치료 과정이나 치료 후에도 ctDNA를 지속적으로 분석하여 암이 다시 나타나는지 (재발) 또는 치료가 잘 되고 있는지 등을 실시간으로 확인할 수 있어요. 마치 암세포를 쫓는 추적자 역할을 하는 셈이죠!

*   **미세 잔존 질환 탐지 (Detection of minimal residual disease):** 수술이나 치료 후 아주 적은 수로 남아있을 수 있는 암세포를 ctDNA 분석을 통해 찾아낼 수 있어요. 이는 암의 재발 위험을 예측하고, 추가적인 치료 계획을 세우는 데 중요한 정보를 제공해 줄 수 있답니다.

*   **조기 암 진단 (Early cancer detection):** 아직 증상이 나타나지 않은 초기 단계의 암을 혈액 검사만으로 발견할 수 있는 가능성을 제시해요. 특히 암 발생 위험이 높은 사람들에게 정기적인 cfDNA 검사를 통해 조기에 암을 발견하고 치료할 수 있다면, 암으로 인한 사망률을 크게 낮출 수 있을 것으로 기대돼요. 다양한 종류의 암을 한 번의 검사로 동시에 진단하려는 **다중 암 조기 진단 (Multi-cancer early detection)** 연구도 활발하게 진행 중이랍니다. 예를 들어, Galleri라는 검사는 혈액 속 cfDNA의 메틸화 패턴을 분석하여 50가지 이상의 암을 조기에 발견하고 암의 위치까지 추정하는 연구를 진행했어요. 또, DELFI라는 방법은 cfDNA 조각의 크기와 분포 패턴을 분석하여 여러 종류의 암을 조기에 진단하는 연구를 진행했죠.

### 하지만 아직 넘어야 할 산도 있어요

물론 cfDNA를 이용한 암 진단 및 모니터링 기술은 아직 개발 단계에 있으며, 몇 가지 해결해야 할 과제들도 남아있어요. 예를 들어, 초기 암 환자의 경우 혈액 속에 있는 ctDNA의 양이 매우 적을 수 있어서 진단의 정확도를 높이는 것이 중요해요. 또한, 암이 아닌 다른 요인으로 인해 cfDNA에 변화가 생길 수도 있기 때문에, 암으로 인한 변화와 정확하게 구별하는 기술이 필요하답니다.

### 미래를 향한 기대

이러한 어려움에도 불구하고, cfDNA 분석 기술은 **비침습적인 방법으로 암을 조기에 진단하고, 맞춤형 치료를 가능하게 하며, 질병의 진행 상황을 정밀하게 모니터링할 수 있는 혁신적인 접근 방식**이라는 데는 의심의 여지가 없어요. 앞으로 더 많은 연구와 기술 개발을 통해 cfDNA가 암과의 싸움에서 우리에게 더욱 강력한 무기가 되어줄 것으로 기대됩니다.

이처럼 우리 몸속 아주 작은 DNA 조각 하나가 미래 의학의 중요한 부분을 차지하게 될 수 있다는 사실, 정말 흥미롭지 않나요? 😊


grok3

**세포유리DNA(cfDNA): 암을 더 일찍, 더 쉽게 찾아내는 새로운 방법!**

안녕하세요, 고등학교 친구들! 오늘은 아주 흥미로운 과학 이야기를 들려드릴게요. 바로 **세포유리DNA(cell-free DNA, cfDNA)**라는 멋진 기술에 관한 거예요. 이 기술은 우리 몸속에서 암을 더 일찍 찾아내고, 병을 더 잘 관리할 수 있게 도와주는 비침습적(몸에 상처를 내지 않는) 방법이에요. 복잡한 과학 논문을 고등학생인 여러분도 쉽게 이해할 수 있도록 풀어서 설명해볼게요!

---

### **세포유리DNA(cfDNA)가 뭐야?**

cfDNA는 우리 몸속에서 세포 밖에 떠다니는 작은 DNA 조각들이에요. 이 DNA 조각들은 주로 세포가 죽거나(예: 아poposis라는 자연스러운 세포 죽음 과정), 손상받거나, 혹은 세포가 스스로 DNA를 밖으로 내보낼 때 생겨나요. 이런 cfDNA는 피, 소변, 타액 같은 체액에서 발견되는데, 보통 200bp(베이스 쌍, DNA의 길이 단위)보다 작아서 아주 작답니다!

특히 암 환자의 경우, 암세포에서 나온 **순환종양DNA(circulating tumor DNA, ctDNA)**라는 특별한 cfDNA가 피 속에 섞여 있어요. 이 ctDNA를 분석하면 암이 있는지, 어떤 상태인지 알 수 있는 중요한 단서를 얻을 수 있죠. 마치 우리 몸이 보내는 비밀 메시지 같은 거예요!

---

### **왜 cfDNA가 중요할까?**

과거에는 암을 찾으려면 조직검사(몸에서 조직을 떼어내는 것)나 CT, MRI 같은 복잡한 검사를 해야 했어요. 하지만 이런 방법들은 비싸고, 때로는 불편하거나 아플 수도 있죠. 게다가 암이 아주 초기일 때는 이런 검사로 찾기 어려운 경우도 많아요.

cfDNA는 **피 한 방울**로 암을 찾아낼 수 있는 가능성을 열어줬어요! 피를 뽑아서 cfDNA를 분석하면, 암세포가 남긴 흔적을 찾아낼 수 있거든요. 이 방법은:

1. **비침습적이에요**: 바늘로 피만 뽑으면 되니까 몸에 부담이 적어요.

2. **빠르고 간단해요**: 병원에서 조직검사를 기다리는 대신, 피 검사로 빠르게 결과를 알 수 있어요.

3. **초기 암도 잡아낼 수 있어요**: 암이 아직 작고 증상이 없을 때도 cfDNA를 통해 알아낼 가능성이 있어요.

---

### **cfDNA로 암을 어떻게 찾아낼까?**

cfDNA를 이용해 암을 찾는 방법은 크게 두 가지로 나눌 수 있어요:

1. **특정 유전자 돌연변이 찾기**  

   암세포는 정상 세포와 다른 유전자 돌연변이를 가지고 있어요. 과학자들은 cfDNA에서 이런 돌연변이를 찾아내는 기술(예: **대상 표적 시퀀싱**)을 사용해요. 예를 들어, 특정 암에서 자주 보이는 58개 유전자를 깊게 분석해서 암의 흔적을 찾는 거죠. 이 방법은 아주 정확하지만, 특정 유전자만 보기 때문에 다른 암의 신호를 놓칠 수도 있어요.

2. **프래그멘토믹스(fragmentomics)로 전체 그림 보기**  

   이건 최근에 떠오르는 새로운 방법이에요! **프래그멘토믹스**는 cfDNA 조각들의 크기, 위치, 분포, 구조, 메틸화(화학적 표지) 같은 여러 특징을 한꺼번에 분석하는 거예요. 암이 있으면 cfDNA 조각들이 정상인 사람과 다르게 생기거든요. 마치 퍼즐 조각이 달라지는 것처럼요! 이 방법은 전체 DNA를 훑어보기 때문에 더 많은 암을 찾아낼 가능성이 높아요.

특히 프래그멘토믹스는 **인공지능(AI)**과 결합해서 엄청난 힘을 발휘해요. AI가 cfDNA의 복잡한 패턴을 분석해서 “이건 암 신호야!”라고 알려주는 거죠. 이 기술은 아직 개발 중이지만, 미래에는 암을 더 빨리, 더 정확하게 찾아낼 수 있을 거예요.

---

### **cfDNA가 어디에 쓰일까?**

cfDNA는 암을 찾는 데만 쓰이는 게 아니에요. 이 기술은 여러 가지 멋진 일을 할 수 있어요:

1. **초기 암 탐지**  

   증상이 없어도 피 검사로 암을 찾아낼 수 있어요. 예를 들어, 폐암이나 유방암 같은 암은 조기에 발견하면 치료 성공률이 훨씬 높아지죠.

2. **암 치료 후 재발 확인**  

   암 치료를 받은 후에 혹시 암이 다시 생겼는지 확인하는 데도 cfDNA를 사용할 수 있어요. 이를 **최소 잔존 질병(minimal residual disease)** 탐지라고 불러요. ctDNA가 피에 남아 있으면 암이 돌아왔을 가능성이 있다는 신호예요.

3. **개인 맞춤 치료**  

   cfDNA를 분석하면 어떤 암이 어떤 유전자 돌연변이를 가지고 있는지 알 수 있어서, 환자마다 가장 효과적인 치료법을 고를 수 있어요.

4. **다양한 암 스크리닝**  

   현재는 유방암, 대장암, 자궁경부암, 폐암 같은 특정 암에만 정기 검진이 있지만, cfDNA 기술이 발전하면 더 많은 암을 한 번에 검사할 수 있을 거예요.

---

### **어려움은 없나요?**

이렇게 멋진 기술이지만, 아직 해결해야 할 과제도 있어요:

- **정확성**: 초기 암은 cfDNA 신호가 아주 약해서 놓칠 때가 있어요. 반대로, 정상인 사람을 암 환자로 잘못 판단할 수도 있죠(이를 **오탐지**라고 해요).

- **비용**: cfDNA 검사는 아직 비쌀 수 있어서 모든 사람이 쉽게 받기 어려워요.

- **데이터 해석**: cfDNA에서 나오는 정보는 엄청 복잡해요. 그래서 AI와 과학자들의 도움이 꼭 필요하죠.

- **임상 검증**: 이 기술이 정말로 사람들의 생명을 구할 수 있는지 확인하려면 더 많은 연구와 실제 병원에서의 테스트가 필요해요.

---

### **미래는 어떻게 될까?**

cfDNA 기술은 계속 발전하고 있어요. 과학자들은 이 기술을 더 정확하고, 더 저렴하게 만들어서 전 세계 사람들이 쉽게 이용할 수 있게 하려고 노력 중이에요. 예를 들어:

- **AI와의 결합**: AI가 cfDNA 데이터를 더 똑똑하게 분석해서 암을 더 잘 찾아낼 거예요.

- **더 많은 암 탐지**: 현재는 몇 가지 암에 집중하지만, 미래엔 거의 모든 암을 한 번의 피 검사로 찾을 수 있을지도 몰라요.

- **집에서 검사?**: 언젠가는 집에서 간단히 피를 뽑아서 cfDNA 검사를 할 날이 올지도!

---

### **마무리**

cfDNA는 우리 몸속에서 암을 찾아내는 새로운 열쇠예요. 피 한 방울로 암을 일찍 발견하고, 치료를 더 잘할 수 있게 도와주는 이 기술은 정말 혁신적이죠! 아직 갈 길이 멀지만, 과학자들이 열심히 연구하고 있으니 머지않아 더 많은 사람들이 이 기술의 혜택을 볼 수 있을 거예요.

여러분도 이 글을 읽으면서 과학의 멋진 세계에 한 발짝 다가갔길 바라요! 궁금한 점이 있으면 언제든 물어보세요. 😊


perplexity.ai

### cfDNA(세포유리 DNA): 비침습적 암 탐지와 질병 모니터링의 새로운 길

우리 몸에는 세포가 죽으면서 DNA 조각들이 혈액 속으로 방출되는데, 이를 *cfDNA(세포유리 DNA)*라고 합니다. 이 작은 DNA 조각들은 혈액 검사로 채취할 수 있어, 몸속에서 일어나는 다양한 변화를 알아내는 데 유용합니다. 특히, 암과 같은 질병의 조기 발견과 상태를 추적하는 데 큰 역할을 하고 있습니다. 이번 글에서는 cfDNA가 어떻게 활용되고 있는지 쉽게 설명해 보겠습니다.

---

### **cfDNA란 무엇인가요?**

cfDNA는 우리 몸의 세포가 자연스럽게 죽거나 분해될 때 방출되는 DNA 조각입니다. 건강한 사람의 경우, 주로 백혈구에서 유래된 cfDNA가 혈액에서 발견됩니다. 하지만 암 환자의 경우, 암세포가 죽으면서 방출된 *ctDNA(순환 종양 DNA)*라는 특별한 형태의 cfDNA가 나타납니다. 이 ctDNA는 암세포의 특징을 담고 있어, 이를 분석하면 암의 존재를 확인할 수 있습니다.

---

### **cfDNA로 암을 어떻게 발견하나요?**

cfDNA 분석은 크게 두 가지 방법으로 이루어집니다:

1. **표적 분석**  

   특정 유전자나 돌연변이를 찾아내는 방식입니다. 예를 들어, 암과 관련된 특정 유전자 돌연변이를 미리 알고 있다면, 이 부분만 집중적으로 분석해 암을 진단할 수 있습니다.

2. **전체 유전체 분석**  

   cfDNA 전체를 분석해 더 많은 정보를 얻는 방법입니다. 최근에는 cfDNA 조각들의 길이나 구조적 특징, 메틸화 패턴 등을 분석하는 기술이 발전하면서 암을 더 정밀하게 탐지할 수 있게 되었습니다.

---

### **cfDNA의 임상 응용 분야**

cfDNA는 단순히 암을 발견하는 것에 그치지 않고, 다양한 의료 분야에서 활용되고 있습니다:

- **조기 암 탐지**  

  혈액 검사만으로 초기 단계의 암을 발견할 수 있습니다. 이는 기존의 침습적인 조직 검사나 복잡한 영상 검사보다 훨씬 간단하고 안전합니다.

- **질병 진행 모니터링**  

  치료 중인 환자의 cfDNA를 정기적으로 분석하면, 치료가 얼마나 효과적인지 또는 암이 재발했는지를 빠르게 알아낼 수 있습니다.

- **다중 암 탐지**  

  한 번의 혈액 검사로 여러 종류의 암을 동시에 탐지할 수 있는 기술도 개발되고 있습니다.

---

### **cfDNA 기술이 가져올 미래**

cfDNA 기술은 아직도 발전 중이며, 앞으로 더 많은 가능성을 열어줄 것으로 기대됩니다:

- 인공지능(AI)과 결합해 더 정밀한 진단이 가능해질 것입니다.

- 비용이 점점 낮아져 더 많은 사람들이 이 기술을 이용할 수 있게 될 것입니다.

- 암뿐만 아니라 심장병이나 자가면역질환 등 다른 질병에도 활용될 가능성이 큽니다.

---

### **마무리하며**

cfDNA는 단순한 혈액 검사로 우리 몸속의 복잡한 변화를 알아낼 수 있는 혁신적인 도구입니다. 특히, 조기 암 진단과 치료 모니터링에서 그 잠재력이 매우 크며, 앞으로 의료 현장에서 점점 더 중요한 역할을 하게 될 것입니다. 과학 기술이 발전하면서 우리가 건강을 관리하는 방식도 이렇게 변화하고 있다는 점이 놀랍지 않나요?


아마 질문이 대한민국 고등학생들이 이해 할 수 있도록 작성해줘 라고 프롬프트를 작성했나봅니다.

사실 cfDNA는 NIPT/NIPS라고 불리는 산전스크리닝분야에서 이미 대스타죠.

NIPT/NIPS에서 산모의 cfDNA가 많은 경우 의심해야하는 경우 중 하나가 암이라는 것이 알려져서 아마 암 스크리닝, 모니터링, 조기진단 툴로 사용되지 않았나합니다. 여튼 cfDNA 단독으로는 한계가 있을 수 있겠지만 그래도 여러 다양한 방법들을 ensemble을 이루어 분석한다면 좋은 마커로 사용되기는 할 듯 합니다. :)


출처: @ye._.vely618


월요일, 8월 12, 2024

MECD, 진실과 논란

BMJ라는 곳에서 영국 NHS에서 평가하고 있는 Grail의 Galleri에 대해서 한소리한 논문을 가져와봤습니다. Galleri promises to detect multiple cancers—but new evidence casts doubt on this much hyped blood test 입니다.

DOI: 10.1136/bmj.q1706

BMJ는 저도 처음 들어본 곳인데, 처음에는 BMC라고 착각했다는;;; 

여튼 BMJ는 >이런 곳< 이라고 합니다.



gemini
## 혈액 한 방울로 50종의 암을 찾는다? Galleri 검사의 진실과 논란
**"혈액 한 방울로 암을 조기에 발견할 수 있다면 얼마나 좋을까?"**
최근 혈액 검사 하나로 50종 이상의 암을 조기에 발견할 수 있다는 Galleri 검사가 큰 주목을 받고 있습니다. 영국 국민보건서비스(NHS)에서도 이 검사를 대규모로 시험하고 있는데요, 과연 이 검사는 우리에게 어떤 의미일까요? 
### 암 조기 진단의 꿈, Galleri 검사
Galleri 검사는 혈액 속의 특정한 DNA 조각(cfDNA)를 분석하여 암을 조기에 발견하는 기술입니다. 만약 이 검사가 성공적으로 도입된다면, 우리는 암을 더욱 빠르게 발견하고 치료할 수 있게 될 것입니다. 
**Galleri 검사의 장점**
* **조기 발견:** 암이 초기 단계일 때 발견하여 치료 효과를 높일 수 있습니다.
* **간편함:** 혈액 검사만으로 다양한 종류의 암을 한 번에 검사할 수 있습니다.
* **생존율 향상:** 조기 진단을 통해 암 환자의 생존율을 높일 수 있습니다.
**Galleri 검사의 단점 및 논란**
하지만 Galleri 검사에 대한 우려의 목소리도 만만치 않습니다.
* **정확도:** 아직까지 Galleri 검사의 정확도에 대한 논란이 있습니다. 특히 초기 단계의 암을 정확하게 검출하는 능력이 충분하지 않다는 지적이 나오고 있습니다.
* **오진:** 정상인에게 암이 있다고 잘못 판정하는 오진율이 높을 수 있습니다. 이는 환자에게 불필요한 불안감을 줄 수 있습니다.
* **비용:** Galleri 검사는 비용이 매우 비싸기 때문에 모든 사람이 이용하기 어려울 수 있습니다.
* **임상시험의 문제:** NHS의 Galleri 검사 임상시험 설계에 문제가 있다는 지적이 나오고 있습니다. 즉, 검사 결과가 실제보다 더 좋게 나올 수 있도록 설계되었을 가능성이 있다는 것입니다.
* **정부와 기업의 유착 의혹:** NHS와 Galleri 검사를 개발한 회사 사이의 유착 관계에 대한 의혹도 제기되고 있습니다.
### 결론: 더 많은 연구와 검증이 필요
Galleri 검사는 암 조기 진단이라는 매력적인 목표를 가지고 있지만, 아직까지 해결해야 할 문제들이 많습니다. 검사의 정확도를 높이고, 비용을 낮추며, 임상시험의 투명성을 확보하는 등 많은 노력이 필요합니다.
**따라서 우리는 Galleri 검사를 맹신하기보다는, 더 많은 연구와 검증을 통해 그 효과를 신중하게 판단해야 합니다.** 

clova-x
 NHS England는 머리와 목, 난소, 췌장암 등 조기 진단이 어려운 많은 암을 진단할 수 있는 Grail의 조기 진단 검사 방법을 테스트하고 있습니다. 이 테스트는 머신 러닝과 인공지능을 이용해 DNA에서 백만 개의 methylation sites를 체크하는 방법입니다.
하지만, 이 테스트는 이미 암이 있는 환자의 43.9%만 진단할 수 있다는 문제점이 있습니다. 또한, 2021년에 발표된 연구에서는 이 테스트의 민감도가 16.8%로 매우 낮다는 결과가 나왔습니다. 이러한 결과는 이 테스트가 실제로 암을 진단하는 데 있어서 효과적이지 않을 수 있다는 우려를 낳고 있습니다.
그럼에도 불구하고, 이 테스트는 많은 사람들에게 희망을 주고 있습니다. 이 테스트가 성공적으로 개발된다면, 많은 사람들이 조기에 암을 발견하고 치료할 수 있게 될 것입니다. 따라서, NHS England는 이 테스트를 계속해서 테스트하고 개선해 나가야 합니다.
하지만, 이 테스트를 진행하는 과정에서는 투명성이 보장되어야 합니다. 또한, 이 테스트가 실제로 효과적인지 검증하기 위해서는 더 많은 연구와 검증이 필요합니다. 이를 위해서는 전문가들과 함께 협력하여 이 테스트를 평가하고 개선해 나가야 합니다.
이 테스트가 성공적으로 개발된다면, 많은 사람들이 조기에 암을 발견하고 치료할 수 있게 될 것입니다. 따라서, 이 테스트를 계속해서 테스트하고 개선해 나가야 합니다. 또한, 이 테스트를 진행하는 과정에서는 투명성이 보장되어야 하며, 이 테스트가 실제로 효과적인지 검증하기 위해서는 더 많은 연구와 검증이 필요합니다. 이를 위해서는 전문가들과 함께 협력하여 이 테스트를 평가하고 개선해 나가야 합니다.
이 글에서는 NHS가 Grail의 조기 진단 검사 방법을 왜 테스트하고 있는지, 어떤 장단점이 있는지, 그리고 어떤 문제가 있는지에 대해서 알아보았습니다. 이 글을 통해 많은 사람들이 이 테스트에 대해 관심을 가지고, 이 테스트가 성공적으로 개발되기를 기대해봅니다.


chatGPT
**영국 NHS의 새로운 암 조기 진단 혈액 검사: 혁신인가, 과대평가인가?**
최근 영국의 국민보건서비스(NHS)는 단일 혈액 검사로 50가지 이상의 암을 감지할 수 있다고 주장하는 "Galleri" 테스트에 대한 대규모 시험을 시작했습니다. 이 소식은 많은 이들의 관심을 끌었지만, 동시에 여러 전문가들은 이 시험의 효과성과 윤리성에 대한 우려를 표명하고 있습니다. 이번 글에서는 Galleri 테스트가 무엇인지, NHS가 이를 시험하는 이유, 그리고 이에 대한 찬반 의견과 문제점에 대해 알아보겠습니다.
---
### **Galleri 테스트란 무엇인가?**
Galleri는 미국 캘리포니아의 바이오테크 기업인 Grail이 개발한 혈액 검사로, 혈액 내 순환하는 세포 유리 DNA(cfDNA) 조각의 메틸화 패턴을 분석하여 다양한 유형의 암을 감지하는 기술입니다. 이 테스트는 머신러닝과 인공지능을 활용하여 혈액 내 암세포의 존재 여부를 판단합니다.
---
### **NHS가 Galleri 테스트를 시험하는 이유는?**
NHS는 2028년까지 암의 75%를 초기 단계에서 진단한다는 목표를 세웠습니다. 이를 달성하기 위해서는 기존의 개별 암 스크리닝 방식을 넘어, 다중 암을 한 번에 감지할 수 있는 혁신적인 방법이 필요합니다. Galleri 테스트는 이러한 요구를 충족시킬 잠재력을 가지고 있어, NHS는 £1.5억 규모의 시험을 통해 이 테스트의 효용성을 평가하고자 합니다.
---
### **Galleri 테스트의 잠재적 장점은?**
- **다중 암 감지**: 기존의 스크리닝은 주로 한 가지 암 유형에 집중되어 있지만, Galleri는 한 번의 혈액 검사로 50가지 이상의 암을 감지할 수 있다고 주장합니다.
- **비침습적 방법**: 혈액 검사는 비교적 간단하고 환자에게 부담이 적습니다.
- **조기 진단 가능성**: 일부 암은 증상이 나타나기 전에 발견되면 치료 성공률이 높아집니다. 조기 진단은 환자의 생존율을 높이고 치료 비용을 절감할 수 있습니다.
---
### **제기된 우려와 문제점은?**
1. **낮은 민감도**: 이전 연구에서 Galleri 테스트는 초기(1기) 암에 대한 감지율이 16.8%에 불과했습니다. 이는 조기 진단 도구로서의 효용성에 의문을 제기합니다.
2. **윤리적 문제**: 일부 전문가들은 이러한 낮은 민감도를 가진 검사를 대규모로 시험하는 것이 비윤리적이라고 주장합니다. 특히, 많은 참가자들이 불필요한 추가 검사를 받거나, 반대로 거짓 음성으로 인해 암을 놓칠 수 있다는 우려가 있습니다.
3. **NHS와 Grail 간의 계약**: 공개된 문서에 따르면, NHS는 시험 결과에 따라 향후 수백만 개의 테스트를 구매할 의무를 가지게 됩니다. 일부 전문가들은 이 계약이 기업에 지나치게 유리하게 체결되었다고 비판하고 있습니다.
4. **투명성 부족**: 시험의 세부 내용과 성공 기준이 명확하게 공개되지 않았으며, 이는 일반적인 임상 시험의 관행에 어긋납니다. 이러한 비밀성은 공공의 신뢰를 떨어뜨릴 수 있습니다.
---
### **향후 전망**
NHS는 현재 시험의 중간 결과에 만족하지 못해, 예정된 대규모 도입을 보류하고 최종 결과를 기다리고 있습니다. 이러한 결정은 Galleri 테스트의 실제 효용성을 신중하게 평가하겠다는 의지로 볼 수 있습니다.
---
Galleri 혈액 검사는 암 조기 진단 분야에서 혁신적인 잠재력을 가지고 있지만, 현재까지의 연구 결과와 진행 방식에 대한 우려도 존재합니다. 기술의 발전과 함께 이러한 새로운 방법들이 도입되는 것은 환영할 만한 일이지만, 공공의 건강과 안전을 최우선으로 고려한 신중한 접근이 필요합니다. 앞으로의 연구와 시험 결과를 통해 Galleri 테스트가 진정한 게임 체인저가 될 수 있을지 지켜봐야 할 것입니다.

claude.ai
제목: NHS의 Galleri 암 조기진단 검사: 혁명인가, 과대광고인가?
안녕하세요, 오늘은 최근 영국 의료계에서 화제가 되고 있는 Galleri 암 조기진단 검사에 대해 이야기해보려 합니다.
Galleri란 무엇인가요?
Galleri는 미국 생명공학 회사 Grail이 개발한 혈액 검사입니다. 이 검사는 단 한 번의 혈액 채취로 50개 이상의 암을 발견할 수 있다고 주장합니다. 현재 영국의 국민보건서비스(NHS)에서 대규모 임상시험을 진행 중입니다.
왜 NHS는 이 검사를 테스트하고 있을까요?
1. 암 조기 진단 목표: NHS는 2028년까지 암의 75%를 조기에 진단하는 것을 목표로 하고 있습니다. Galleri 검사가 효과적이라면 이 목표 달성에 크게 도움이 될 수 있습니다.
2. 다중 암 검출: 기존의 검진 방식은 유방암, 대장암 등 특정 암에 대해 개별적으로 이루어졌습니다. Galleri는 한 번의 검사로 여러 종류의 암을 동시에 검출할 수 있다고 합니다.
3. 의료 혁신: 이 기술이 성공적이라면 암 진단 분야에 큰 혁신을 가져올 수 있습니다.
Galleri 검사의 장단점은 무엇인가요?
장점:
- 간편성: 한 번의 혈액 검사로 여러 암을 동시에 검사할 수 있습니다.
- 조기 발견 가능성: 증상이 나타나기 전 암을 발견할 수 있는 잠재력이 있습니다.
단점:
- 낮은 초기 암 탐지율: 연구 결과, 1기 암에 대한 탐지 민감도가 16.8%에 불과했습니다.
- 높은 위양성률: 한 연구에서는 62%의 양성 결과가 실제로는 암이 아닌 것으로 나타났습니다.
현재 어떤 문제가 제기되고 있나요?
1. 임상시험의 윤리성: 일부 전문가들은 초기 데이터가 좋지 않음에도 대규모 임상시험을 진행하는 것이 윤리적인지 의문을 제기하고 있습니다.
2. 투명성 부족: 임상시험의 세부 내용과 성공 기준이 명확히 공개되지 않았다는 지적이 있습니다.
3. 비용 대비 효과: 검사의 정확도가 낮은 데 비해 비용이 높다는 우려가 있습니다. 미국에서는 한 번의 검사에 750파운드(약 120만원)의 비용이 듭니다.
4. 정부와 기업의 관계: NHS와 Grail 사이의 계약 내용과 정부 인사들과 회사 간의 관계에 대한 의문이 제기되고 있습니다.
결론
Galleri 검사는 분명 혁신적인 잠재력을 가지고 있습니다. 하지만 현재로서는 그 효과성과 윤리성에 대한 의문이 남아있습니다. NHS의 임상시험 결과가 나오는 2026년, 우리는 이 기술이 정말로 암 진단의 혁명을 가져올 수 있을지 알 수 있을 것 같습니다. 그때까지 우리는 이 기술의 발전을 주의 깊게 지켜봐야 할 것입니다.


쉽게 얘기해서 다 좋은데 아직 더 지켜봐야겠다. 그리고 NHS 너네들 잘 하고 있는거 맞냐? 되겠습니다. 

역시 문제는 우리나라만 있는건 아닌듯 합니다. :)



출처: @ye._.vely618


토요일, 4월 13, 2024

ONT, cfDNA 그리고 Methylation

나노포어를 이용해서 cell-free DNA의 메틸레이션 패턴을 분석한 논문이 있어서 한번 가져와봤습니다.
이번에는 제목은 어떻게 쓰면 좋을지 한번 물어보았습니다.

제목 답변

해당 연구의 제목은 "Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing"입니다. 이 제목은 세포유리 DNA의 메틸화 패턴을 분석하여 암세포에서 유래한 세포유리 DNA를 식별하는 방법을 개발한 연구라는 것을 나타내고 있습니다. 이 연구는 생명공학 분야에서 매우 중요한 연구 중 하나이며, 세포유리 DNA의 메틸화 패턴을 분석하는 기술은 암 진단과 치료에 큰 도움을 줄 수 있습니다.
"세포유리 DNA의 메틸화 패턴을 이용한 암 진단 연구"와 같은 제목을 사용할 수 있습니다. 이 글에서는 연구의 목적과 방법, 결과 등을 소개하고, 세포유리 DNA의 메틸화 패턴이 암 진단에 어떻게 활용될 수 있는 지에 대해 설명할 수 있습니다.

내용 요약

이 연구는 세포유리 DNA의 메틸화 패턴을 분석하여 암을 진단하고 모니터링하는 방법을 개발하는 것을 목적으로 합니다. 암은 우리 주변에서 매우 흔하게 발생하는 질병 중 하나이며, 암을 조기에 발견하고 치료하는 것은 매우 중요합니다. 세포유리 DNA의 메틸화 패턴을 분석하는 기술은 암을 조기에 발견하고 치료하는 데 큰 도움을 줄 수 있습니다.

세포유리 DNA는 혈액 내에 존재하는 DNA 조각으로, 암세포에서 유래한 것일 수 있습니다. 이 연구에서는 세포유리 DNA의 메틸화 패턴을 분석하여 암세포에서 유래한 세포유리 DNA를 식별하는 방법을 개발하였습니다. 이를 위해 Nanopore sequencing 기술을 사용하여 세포유리 DNA의 염기서열을 분석하고, DNA methylation 분석을 수행하였습니다.

연구 결과, 세포유리 DNA의 메틸화 패턴은 암세포에서 유래한 세포유리 DNA와 건강한 세포에서 유래한 세포유리 DNA에서 차이가 있음을 확인하였습니다. 이는 세포유리 DNA의 메틸화 패턴을 분석하여 암을 진단할 수 있는 가능성을 보여줍니다. 또한, 이 연구는 세포유리 DNA의 메틸화 패턴이 시간에 따라 변화한다는 것을 발견하였습니다. 이는 암의 진행 상황을 모니터링하는 데 유용한 정보를 제공할 수 있습니다.

이 연구는 세포유리 DNA의 메틸화 패턴을 분석하여 암을 진단하고 모니터링하는 데 새로운 가능성을 제시한 것으로 평가됩니다. 이 연구 결과를 바탕으로, 세포유리 DNA의 메틸화 패턴을 분석하는 기술이 발전하면 암 진단과 치료에 더욱 효과적인 방법이 개발될 것으로 기대됩니다.

이 연구는 생명공학 분야에서 매우 중요한 연구 중 하나입니다. 세포유리 DNA의 메틸화 패턴을 분석하는 기술은 암 진단과 치료에 큰 도움을 줄 수 있으며, 미래에는 더욱 발전하여 다양한 질병을 진단하고 치료하는 데 활용될 수 있을 것입니다. 또한 미래의 건강과 의료 산업에 큰 영향을 미칠 것이며, 우리의 삶을 더욱 건강하고 안전하게 만들어줄 것입니다.

요약해줘 하니깐, 그래 이 연구는 중요해, 중요하니깐 중요해만 반복적으로 답변하는 느낌은 어쩔 수 없는듯합니다. 디테일 한 연구 내용을 확인하려면 질문을 계속 해서 확인해야 할 듯 합니다.

다시 잠깐 더 살펴보자면 단순히 ONT로 실험한 것이 아니고 기존의 표준실험 방법인 WGBS(Whole Genome Bisulfite Sequencing)와 비교한 데이터로 ONT로 연구해도 cfDNA의 메틸레이션을 확인 할 수 있다라고 주장하고 있는데... 생각해보면 cfDNA는 long read 시퀀서의 대명사인 ONT를 사용할 매력이 반감되기는 하나 native한 methylation을 볼 수 있다는 또 다른 압도적인 장점이 존재하다 보니..
그러나 보통 cfDNA가 150bp 이내의 짧은 것들만 생각하나 di나 tri-nucleosome도 함께 확인 할 수 있기 때문에... di나 tir nucleosome은 300~400bp 이상의 길이가 있기 때문에, 꼭 ONT의 매력이 반감되지는 않을 듯 합니다.
근데 di-, tri-nucleosome이 왜 중요한지는 제가 공부를 아직 안 해서 잘 모르겠습니다.
나중에 공부하게 되면 다시 글을 하나 써보는 걸로 :)


일요일, 2월 11, 2024

WGS 데이터를 활용하여 어떤 방법이 환자에게 보다 효과적인지 확인해보자

바다 건너 영국에서 진행하고 있는 WGS를 활용한 암환자들에 대한 치료 기회에 대한 내용에 대한 논문을 한번 bar..아니 gemini에게 물어봤습니다.

논문 제목은 "Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme"

doi: 10.1038/s41591-023-02682-0

입니다.


이번 프롬프트는 간결하게 "https://www.nature.com/articles/s41591-023-02682-0 이 연구를 하게 된 이유와 연구에 사용된 분석 방법, 그리고 결과에 대한 내용에 대해서 블로그에 게시할 수 있도록 정리해서 작성해줘" 라고 넣어봤습니다.


제목: 암 치료를 위한 개인화된 접근 방식

요약:

암은 전 세계적으로 사망 원인 1위입니다. 암 치료는 종종 화학 요법, 방사선 요법 및 수술을 포함하는 복잡한 과정입니다. 그러나 이러한 치료법은 모든 환자에게 효과적이지 않으며 종종 부작용을 유발할 수 있습니다.

연구 배경:

최근 몇 년 동안 암 치료에 대한 개인화된 접근 방식에 대한 관심이 높아졌습니다. 개인화된 치료는 환자의 특정 유전적 특성에 맞게 조정된 치료법입니다.

연구 방법:

이 연구는 100,000 게놈 프로젝트의 암 프로그램의 데이터를 사용했습니다. 이 프로젝트는 암 환자의 전체 게놈을 시퀀싱하는 것을 목표로 합니다. 연구원들은 33가지 암 유형의 13,880개 종양을 분석했습니다. 그들은 이 데이터를 실제 치료 및 결과 데이터와 연결했습니다.

연구 결과:

연구 결과는 WGS가 많은 암 유형에서 유용한 도구가 될 수 있음을 보여줍니다. WGS는 환자의 치료 반응에 영향을 미칠 수 있는 유전적 변화를 식별하는 데 사용할 수 있습니다. 이 정보는 더 개인화된 암 치료법을 개발하는 데 사용될 수 있습니다.

연구 결론:

이 연구는 WGS가 암 치료를 위한 개인화된 접근 방식을 개발하는 데 중요한 도구가 될 수 있음을 보여줍니다. WGS는 환자의 치료 반응을 예측하고 더 효과적이고 안전한 치료법을 개발하는 데 도움이 될 수 있습니다.

이 연구가 암 치료에 미치는 잠재적 영향:
- WGS는 암 치료의 성공률을 높이고 부작용을 줄이는 데 도움이 될 수 있습니다.
- WGS는 암 환자에게 더 나은 치료 옵션을 제공할 수 있습니다.
- WGS는 암 치료의 비용을 절감하는 데 도움이 될 수 있습니다.

이 연구의 한계:
이 연구는 100,000 게놈 프로젝트의 데이터를 사용했습니다. 이 데이터는 영국과 미국의 환자를 대상으로 합니다. 다른 국가의 환자에게도 WGS가 유용한 도구가 될지는 확실하지 않습니다.
이 연구는 WGS가 암 치료에 미치는 잠재적 영향을 평가했습니다. 그러나 WGS가 실제로 암 치료의 성공률을 높이고 부작용을 줄이는 데 도움이 되는지 여부는 더 많은 연구가 필요합니다.

 

개별 암종별 변이 종류에 따른 설명이 많이 생략되어 있긴하지만, 프롬프트를 잘 작성하면 필요에 맞는 내용을 잘 요약해서 정리해 줄 것으로 생각되고, 결국 깨작깨작 패널대신 걍 WGS를 하고 더불어 methylation, proteomics, RNAseq 등의 정보들도 조합하면 우리가 꿈꾸는 예후 예측이나 더 나은 환자의 치료를 제공할 수 있지 않겠냐고 잘 마무리하고 있는 논문 되겠습니다.

그리고 물론 위에 것을 하려면 아직 돈은 많이 든다. 언젠가 그렇듯이 이 또한 해결 할 수 있는 그 날이 오면 좋겠다. 라고 합니다. 


그럼 설 연휴 잘 마무리하는 걸로 :)




출처: @ye._.vely618


금요일, 12월 01, 2023

이제 우리 cfDNA를 활용해 보아요 (feat. 머신러닝)


Genome-wide cell-free DNA fragmentation in patients with cancer


"내 혈관 속 DNA가 말해줘"라는 BTS의 DNA의 가사 처럼 우리 혈관 속에는 우리 상태를 알게 해주는 마커로 사용할 수 있는 cfDNA가 있습죠

오늘은 2019년 발표된 "Genome-wide cell-free DNA fragmentation in patients with cancer"라는 논문을 가져와봤습니다.

DOI: 10.1038/s41586-019-1272-6

이 논문은 암환자의 혈액 내 cfDNA를 측정하여 암 진단은 당연하고, 어떤 암종인지, 조기 발견 및 모니터링을 위한 초석을 놓은... 물론 그전에 다른 논문에서 이미 초석을 다진 논문도 있을것 같긴하지만, 어찌됐든 모 괜찮은 논문이라고 생각합니다. :)


그래서 7종의 암환자 200여명과 건강한 (aka 암환자가 아닌) 건강한 사람의 cfDNA을 분석해서 이리저리 굴려보고 돌려보고 해서(결국 머신러닝 아니겠습니까) 암종간 cfDNA의 profile의 변화를 머신러닝을 통해 모델을 만들었고, cfDNA profile 모델과 함께 cfDNA상에 존재하는 변이를 활용하면 더 나은 결과를 보여줬다고 하네요


cfDNA는 원래 혈액속에 있는 암에 걸리면 (무조건은 아니지만) cfDNA의 양이 증가하게 됩니다. 원래 혈액속에 떠다니는 cfDNA가 만들어지는 source외에 암세포가 혈액에 추가로 cfDNA가 더 공급하는 꼴이 되기때문이죠.

cfDNA 중 암세포에서 나온 cfDNA인 ctDNA?만 따로 선별하는 방법으로 접근하기도합니다. 개인적으로는 cfDNA에서 ctDNA를 찾겠다 보다는  cfDNA를 더 잘 characterization 하는게 나을듯한데... cfDNA를 characterization하면 ctDNA를 더 잘 구별할 수 있게 되는건가? 여튼..

아.. 그래서 제가 블로그에 가끔씩 얘기했던 NIPT를 하다가 산모의 암도 찾아냈다고 하는 얘기가 있었기도 했습니다.

오늘은 cfDNA와 머신러닝 방법을 이용해서 암진단 및 암종 구분을 하는 논문에 대해서 잠깐 얘기해보았는데, 분야를 막론하고 머신러닝 모델을 개발할것 까지는 아니지만 활용을 잘 할 수 는 있어야 한다는 느낌은 항상 받는것 같습니다.


23년 12월의 첫날, 아내느님의 탄생일 기념으로 포스팅을 해보았습니다.




출처 : @candyz_hyojung


수요일, 11월 22, 2023

어떤 시퀀서가 NIPT를 잘 할까

간만에 NIPT 논문을 들고 와봤습니다.

어떤 시퀀서가 NIPT에 더 적합한가 알아보자 되겠습니다.

2019년에 출판된 논문으로 "Prospective head-to-head comparison of accuracy of two sequencing platforms for screening for fetal aneuploidy by cell-free DNA: the PEGASUS study" 이고, 

doi는 https://doi.org/10.1038/s41431-019-0443-0 입니다.

위에서 언급했다 싶이 시퀀싱 기기별 NIPT의 임상적 성능을 비교한 내용으로 T13/18/21 그리고 Monosomy X 검사에 대해서 테스트를 진행했다고 합니다.

그리고 비교한 시퀀싱 기기는 시퀀싱 시장의 대장인 illumina의 HiSeq와 Thermo의 Proton이라고 하네요.

결과적으로는 둘다 정확도는 99%이상이었으나 미세하게 차이가 결과에 차이가 있었다고합니다. 

민감도와 위양성률 모두 HiSeq 성능이 우수했고, 시퀀싱 처리시간에서는 Proton이 짧은 처리 시간을 자랑한다고 합니다.


표면적으로 보면 일루미나의 HiSeq이 Thermo의 Proton보다 우수하다고 결정 내릴 수 있으나 사실 꼭 그렇지는 않을듯합니다. 실험 디자인에서 서술되어 있는 내용을 보면 cell-free DNA 추출 후 두개로 나누어 각각 기기에서 실험을 한건 같아 보이지 않아서 입니다. 

혈액 채취 후 각각의 실험실에 보내어 각 실험실에서 자체 프로토콜로 진행하지 않았나 싶습니다. 그래서 정확하게는 실험실간의 성능 비교이지 않나 싶습니다.

NIPT에서는 cell-free DNA내 태아의 cell-free DNA 양이 굉장히 중요하기 때문에 실험을 하는 사람의 숙련도나 방법에 따라 분석을 할 수 없기도 해서..

여튼 그래도 중국에서 진행했던 (대략 1만여건 정도..) 대규모 연구 이후로 꽤 큰 샘플 개수이고 보통 단일 플랫폼으로 테스트를 진행하는데 서로 다른 기술 기반의 플랫폼(광학과 수소이온)에서 테스트를 하여 플랫폼 간 우위에 대한 내용은 얘기하기 어렵지만, 어찌 됐던 cell-free DNA 기반의 선별 검사는 효과적인 방법이라는 것을 다시 한번 확인하는 연구이지 않았나 싶네요

결론은 illumina던 Thermo던 압도적 우위에 있는 플랫폼은 없으니 각자 application과 상황에 맞는 플랫폼과 방법을 선택해서 하는 것이 중요하다. 정도? 이지 않나 싶네요 :)


아.. 연구 이름인 PEGASUS는 "PErsonalized Genomics for prenatal Aneuploidy Screening USing maternal blood"의 약자라고 합니다. PEGASUS 홈페이지도 있습니다.




출처: @ye._.vely618


수요일, 10월 23, 2019

산모의 건강상태가 NIPS에 미치는 영향

Noninvasive prenatal testing for aneuploidy using cell-free DNA – New implications for maternal health

간만에 하는 업무와 갱장히 밀접한 글 하나 투척이라기 보다는
간단히 정리 정도...


NIPS/NIPT, 비침습적 산전 스크리닝 혹은 테스트의 약자로 산모의 혈액내에 있는 태아의 cfDNA를 사용하여 태아에 문제가 있는지 확인 할 수 있는 기술로써 홍콩대학의 Denis Lo 옹께서 산모 혈액내에 태아것도 있다. 그리고 산모와 태아의 것을 구분 할 수 있다고 밝혀주셔서 전세계적으로 빠르게 확산되었죠.


지속적인 연구를 통해 Trisomy 13/18/21에 대해서 우수한 정확도를 보여주고 있습니다만, NIPS/NIPT를 하다보면 이게 검사가 잘 안되는 경우가 있습니다.

그러나 어떠한 이유인지 분석 할 수 없는 경우나 알 수없가 없었습니다.
그래서 지속적으로 축적된 임상 경험을 바탕으로 NIPS/NIPT와 산모의 건강과 관련하여 상호관계가 있을것으로 추측하였고 그래서 한번 어떤 것들이 NIPS/NIPT의 성능에 영향을 미치는지 조사해본 논문하나를 살펴보았습니다. :)


산모의 비만 (Obesity)

NIPS/NIPT를 할 때 의뢰서에 키와 몸무게 란이 있습니다. 이는 BMI이 치수로 산모의 체질량을 확인하는데 BMI가 높을수록 NIPS/NIPT에 필요한 태아의 cfDNA의 비율이 떨어지기 떄문에 NIPS/NIPT가 실패할 확률이 높아진다고 보고되고 있습니다.
지방세포에서 세포 사멸과 괴사로 혈중 내 태아의 cfDNA보다 산모의 cfDNA 양이 상승하여 태아의 cfDNA 비율을 떨어트린다는 것입니다.


자가면역질환 (Autoimmune disease)

자가면역질환은 문자 그대로 자기 자신을 공격하는 질환으로 세포 주기가 굉장히 짧아지는것이 문제가 되어 임신하지 않은 전신성 홍반성 루프스(SLE) 환자에서 혈중 cfDNA가 증가하는 것을 확인했습니다. 그래서 SLE가 있는 임산부의 NIPS/NIPT결과를 해석할 때는 주의를 기울여야 한다고 말하기도 하였습니다.


태아 분획에 영향을 줄 수 있는 것들 (Other maternal influences on fetal fraction)

표2(논문 참조)에 나와있듯이 태아 분획과 다양한 산모의 특징(인종, 흡연여부, 고혈압, 나이등등등)들은 통계적으로 유의한 연관성을 가지고 있으나 이러한 산모의 특징들은 상반된 결과를 나타내는 결과들도 있기 때문에 덜 중요해 보인다고 합니다.
(인종 ㅂㄷㅂㄷ, ㅂㄷㅂㄷ 했다고 인종차별자는 아니니 오해 없으시기 바랍니다.)


산모가 받은 처방 (Maternal medications)

산모가 복용하는 약 또한 NIPS/NIPT의 결과를 방해 할 수 있습니다.
LMWH(Low molecular weight heparin)은 NIPS/NIPT에 부정적인 영향을 미치는 첫 물질이었습니다. heparin과 NIPS/NIPT의 부정적인 결과에 대해서 정확한 메카니즘은 알려져 있지 않지만 NIPS/NIPT 검사를 위해서는 heparin 복용을 일정 시간 중단해야 합니다. 그리고 IVIG(Intravenous immunoglobulin)의 경우 cfDNA가 증가하는 것처럼 보고 되었지만 NIPT의 분석 성능에는 확인되지 않았습니다.


장기 이식 받은 산모 (Organ transplant recipients)

장기 이식을 받은 산모의들의 NIPS/NIPT는 고려를 해봐야 합니다. 특히나 장기 이식받은 장기가 남성 기증자라면 특히나 주의해야한다. 남성 기증자의 장기는 Y염색체 특이적 cfDNA서열을 만들어내어 잘못된 판단을 유발 할 수도 있다. 그리고 NIPS/NIPT는 염색체 이상이 있는 산모가 하면 정확하지않은 결과를 받아볼 수 있기 때문에 NIPS/NIPT 전 상담을 꼭 진행해야 합니다.


※ 정정 :하단은 NIPS/NIPT를 해서 산모로부터 우연히 알게되는 것에대한 내용입니다.

산모의 성염색체 상태 (Maternal sex chromosome conditions)

NIPS/NIPT에서 X염색체의 정확도는 13/18/21과 같은 상염색체보다 본질적으로 좋지 않습니다. 다른 이수성에 비해 X 염색체 이상에 대해 더 높은 태아 및 태반 모자이크 현상이 있습니다. 산모에 따라 나이와 연관있는 X 염색체 손실이 일어나기도 하고 일부 산모에게서는 정상 XX에서 저수준으로 XO/XX 모자이크로 바뀌기도 합니다.또한 많은 SCA(Sex chromosome aneuploidies)는 불확실한 NIPS/NIPT결과를 초래하기도 합니다. NIPS/NIPT에 의해 의심된 181개 SCA case중 16 case (8.5%)가 산모에 의해 기인한 것으로 확인되었다고 합니다.


산모의 상염색체 이상 (Maternal autosomal abnormalities)

산모의 상염색체이상도 잘못된 NIPS/NIPT 결과를 발생시킵니다. 이런 경우 산모가 저수준의 모자이크 T18이나 염색체 13 혹은 18번에 부분적으로 중복이 있어 발생할 수 있습니다. 최근 NIPS/NIPT 분석 중에 22q11.2와 같은 미세결실 증후군을 탐지하고 있는데 한 연구에서 고위험의 미세 결실 결과 중 60%(20 case/32 case)가 산모에 의한 것이지 않을까 의심되고 있습니다. 그러나 다른 NIPS/NIPT 제공 업체의 경우 고위험 미세 결실 결과중 2%만이 산모에 의한 것으로 확인(?이 진짜 된건지 산모를 검사를 했는지는 까지는)됐다고 합니다. 그런데 이런 차이가 나는 이유는 NIPS/NIPT분석 방법이나 reference의 편향성이나 인구 특징들에 따라 달라지기 때문에 분석 결과에 대한 비교까지는 어려운것 같다고 합니다.


산모의 종양 (Maternal malignancy)

종양세포는 NIPS/NIPT 분석에 사용하는 혈장내의 cfDNA를 기여하고 있다는 것에 누구도 부정은 못할 것 입니다. 종양이 NIPS/NIPT 결과에 영향을 준다는 사례 보고는 여기에서 설명되었습니다. 125,426명의 산모 집단에서 산모의 종양으로 인해 NIPS/NIPT결과가 불일치한 산모 10명에 대해서 정보를 공개했습니다. 산모들의 종양/암 유형은 lymphoma, leukaemia, colorectal and anal cancers 이었다고 합니다.
그리고 산모들은 추가적인 생물정보학적 분석으로 비특이적인 CNV들을 보여줬는데 NIPS/NIPT에서 관찰된 비특이적인 패턴들은 종양/암 치료후 사라져서 종양/암과 NIPS/NIPT와의 관계를 확인 할 수 있었습니다.


그래서 종합적으로 요약하자면 임상적으로 NIPS/NIPT에 대한 경험과 자료가 증가함에 따라 산모의 건강과 밀접한 관련이 있다는 것을 확인 할 수 있었고 비만, 면역질환 및 LMWH 치료와 같은 NIPS/NIPT 결과에 영향을 줄 수 있는 산모의 상태에 대해서 인지하고 있어야합니다(안그러면 위양성 결과를 받아들고 옳지못한...).
NIPS/NIPT결과로 얻어진 2차 산모의 위험 소견에 대해 산모에게 알리는 것도 중요한 윤리적 고려사항이라고 생각됩니다.


이렇다고합니다.

간만에 업무와 관련되 내용 포스트 좀 해봤습니다.

출처: sana_twice.09