레이블이 next generation sequencing인 게시물을 표시합니다. 모든 게시물 표시
레이블이 next generation sequencing인 게시물을 표시합니다. 모든 게시물 표시

목요일, 10월 31, 2024

NGS에서 통계적 검정력과 표본 크기 계산의 중요성

오늘은 간만에 좀 지난 논문을 하나 가져와봤슴다. Power and sample size calculations for high-throughput sequencing-based experiments으로 high-throughput seq 실험을 할 떄 검정력과 샘플 개수를 어떻게 사용해야 하는지에 대한 내용되겠습니다. 


DOI: 10.1093/bib/bbx061


gemini

**NGS 기반의 실험의 통계적 Power와 표본 크기 계산**

NGS 기반의 실험은 빠르게 발전하는 기술로, 생명과학 분야에서 광범위하게 사용되고 있습니다. 이 기술은 DNA, RNA, 단백질 등의 고분자를 대상으로 하는 다양한 실험에 활용되며, 대량의 데이터를 생성합니다. 이러한 대량의 데이터를 분석하고 해석하기 위해서는 통계적 방법이 필수적입니다. 통계적 power와 표본 크기 계산은 NGS 기반의 실험을 설계하고 분석하는 데 있어서 매우 중요한 요소입니다.

Power는 통계적 검정에서 유의한 결과를 얻을 수 있는 확률을 나타냅니다. 즉, 1-β로 나타내며, β는 제1종 오류의 확률입니다. 제1종 오류는 귀무가설이 참인데도 거짓으로 기각하는 오류입니다. 표본 크기는 통계적 검정에서 유의한 결과를 얻기 위해 필요한 표본의 크기를 나타냅니다.

NGS 기반의 실험에서 통계적 power와 표본 크기 계산은 여러 가지 요인에 영향을 받습니다. 예를 들어, 실험 대상의 특성, 실험의 목적, 실험 방법, 분석 방법 등이 있습니다. 이러한 요인들을 고려하여 적절한 통계적 power와 표본 크기를 계산하는 것이 중요합니다.

이러한 요인들을 고려하여 적절한 통계적 power와 표본 크기를 계산하는 것이 중요합니다. 이를 위해서는 통계학 전문가의 도움을 받는 것이 좋습니다. 또한, 다양한 통계적 power와 표본 크기 계산 방법이 개발되어 있으므로, 자신의 연구에 가장 적합한 방법을 선택하는 것이 중요합니다.

**NGS 기반의 실험의 통계적 Power와 표본 크기 계산의 중요성**

NGS 기반의 실험에서 통계적 power와 표본 크기 계산을 올바르게 수행하지 않으면, 다음과 같은 문제가 발생할 수 있습니다.

* 유의한 결과를 얻지 못할 수 있습니다.

* 실험에 필요한 비용이 과도하게 발생할 수 있습니다.

* 실험 결과의 신뢰성이 떨어질 수 있습니다.

따라서, NGS 기반의 실험을 설계하고 분석할 때에는 통계적 power와 표본 크기 계산을 반드시 고려해야 합니다.



clova-x

최근 생명공학 분야에서는 차세대 염기서열 분석(NGS) 기술이 빠르게 발전하면서, 대규모의 유전 정보를 빠르고 정확하게 분석할 수 있게 되었습니다. 이에 따라 NGS 기술을 활용한 다양한 연구가 활발하게 이루어지고 있습니다.

NGS 기반의 실험에서는 많은 양의 데이터가 생성되기 때문에, 이를 효과적으로 분석하기 위해서는 적절한 통계적 방법이 필요합니다. 특히, 실험의 목적에 따라 적절한 표본 크기를 결정하고, 통계적 파워를 계산하는 것이 중요합니다.

통계적 파워란, 연구에서 설정한 가설을 검증할 수 있는 능력을 나타내는 지표입니다. 즉, 실험에서 얻은 결과가 우연에 의한 것이 아니라, 실제로 가설을 지지하는 것인지를 판단하는 데 도움을 줍니다.

표본 크기란, 연구에서 사용하는 데이터의 양을 말합니다. 표본 크기가 클수록 통계적 파워가 높아지기 때문에, 보다 정확한 결과를 얻을 수 있습니다. 하지만, 표본 크기가 너무 커지면 비용이 많이 들기 때문에, 적절한 균형을 유지하는 것이 중요합니다.

이번 연구에서는 NGS 기반의 실험에서 통계적 파워와 표본 크기를 계산하는 방법에 대해 다루었습니다. 이를 위해 다양한 통계적 모델과 알고리즘을 사용하였으며, 실제 데이터를 활용하여 검증하였습니다.

연구 결과, NGS 기반의 실험에서는 리드 깊이, 분산 등의 고유한 매개변수를 고려하여 통계적 파워와 표본 크기를 계산해야 한다는 것을 확인하였습니다. 또한, 여러 가지 통계적 모델 중에서 Negative Binomial 모델이 NGS 데이터의 특성을 잘 반영하는 것으로 나타났습니다.

이번 연구는 NGS 기반의 실험을 계획하는 연구자들에게 유용한 정보를 제공합니다. 실험의 목적에 따라 적절한 표본 크기를 결정하고, 통계적 파워를 계산함으로써 보다 정확한 결과를 얻을 수 있으며, 이를 통해 생명공학 분야의 발전에 기여할 수 있을 것으로 기대됩니다.

NGS 기술과 통계적 방법은 계속해서 발전하고 있기 때문에, 이에 대한 지속적인 연구와 업데이트가 필요합니다. 연구자들은 최신 기술과 방법을 적극적으로 활용하여, 보다 정확하고 효율적인 연구를 수행해야 합니다.



chatGPT

이 연구는 고처리량 시퀀싱(HTS) 기반 실험에서 통계적 파워와 샘플 크기 계산의 중요성을 설명하는 데 중점을 두고 있습니다. **통계적 파워**란, 실험에서 의미 있는 차이나 효과를 발견할 수 있는 능력을 의미하며, 실험의 성공 여부에 중요한 역할을 합니다. 샘플 크기 역시 실험 결과의 신뢰성을 결정하는 핵심 요소입니다. 따라서 실험을 설계할 때, 통계적 파워와 적절한 샘플 크기를 계산하는 것은 필수적입니다.

**연구 배경**  

고처리량 시퀀싱(HTS)은 DNA, RNA, 마이크로바이옴(미생물군집), 단백질-유전체 상호작용 연구 등에서 활용되는 최신 기술로, 한 번에 수백만 개의 데이터를 분석할 수 있습니다. HTS 기술은 생물학적 연구를 한 단계 더 발전시키는 데 기여했지만, 이러한 복잡한 데이터 분석에 맞는 통계적 방법을 적용하는 것이 매우 어렵습니다. 특히, HTS 실험에서는 데이터의 다양성과 복잡성으로 인해 **파워 분석**이 필수적입니다. 기존의 유전자 분석 방식과는 달리, HTS 데이터는 더 많은 변동성과 오류 가능성을 포함하고 있어 더욱 세밀한 분석이 요구됩니다.

**연구에서 사용된 방법**  

이 연구에서는 HTS 기반 실험에 필요한 파워와 샘플 크기 계산 방법을 다루고 있습니다. 연구진은 다양한 시퀀싱 방법에 따른 통계적 분석 도구를 사용했습니다. 예를 들어, DNA 시퀀싱에서는 변이(유전자 돌연변이)를 발견하고 이를 표현형(겉으로 드러나는 특성)과 연관 짓기 위한 파워 분석을 진행했습니다. RNA 시퀀싱에서는 유전자 발현 수준의 차이를 분석하기 위해 **Poisson 분포**와 **음이항 분포** 등의 통계 모델을 적용하여 샘플 크기를 계산했습니다. 또한, 마이크로바이옴 연구에서는 미생물 종의 다양성을 분석하기 위해 **다항 분포**를 사용한 파워 분석을 수행했습니다. 이 연구에서 사용된 통계적 방법들은 모두 HTS 실험의 목표와 데이터 유형에 맞게 조정되었습니다.

**연구 결과**  

연구진은 HTS 실험에서 실험 설계의 성공 여부를 판단하는 데 있어 파워 분석이 필수적이라는 결론을 내렸습니다. HTS 데이터는 기존의 유전자 분석 데이터보다 더 많은 변수를 포함하고 있어, 정확한 분석을 위해서는 실험의 목표에 맞춘 정교한 통계적 방법이 필요합니다. 연구는 각 시퀀싱 방법에 맞는 다양한 파워 분석 도구와 계산 방법을 제안했으며, 이를 통해 연구자들이 실험 설계 시 적절한 샘플 크기를 선택하고 신뢰성 있는 결과를 얻을 수 있도록 안내했습니다.

**연구의 의의**  

이 연구는 HTS 기반 실험의 성공을 위한 통계적 파워와 샘플 크기 계산의 중요성을 재조명했습니다. HTS 기술을 사용하는 연구자들에게는 실험 설계 시 데이터의 복잡성을 고려하여 적절한 통계적 방법을 적용하는 것이 필수적입니다. 이를 통해 과학적 연구의 신뢰성을 높이고, 더 나아가 생물학적 발견을 이루는 데 기여할 수 있습니다. 일반 대중에게는 HTS 기술이 얼마나 중요한 역할을 하는지, 그리고 이러한 실험에서 신뢰성 있는 결과를 얻기 위해서는 철저한 통계적 분석이 필요하다는 점을 알리는 중요한 계기가 될 것입니다.



NotebookLM

## 차세대 염기서열 분석(NGS) 기반 실험에서 통계적 검정력과 표본 크기 계산의 중요성

최근 생명 공학 분야에서는 차세대 염기서열 분석(NGS) 기술이 등장하면서 생명 현상을 분자 수준에서 이해하는 데 혁명적인 발전을 이루었습니다. NGS는 DNA나 RNA와 같은 유전 물질을 빠르게 해독하여 방대한 양의 유전 정보를 생성할 수 있는 기술입니다. 이러한 대규모 데이터를 기반으로 질병의 원인을 규명하고 개인 맞춤형 치료법을 개발하는 등 다양한 연구가 진행되고 있습니다. 하지만 NGS 기반 실험은 높은 비용과 복잡한 데이터 분석 과정 때문에 연구 설계 단계에서부터 신중한 고려가 필요합니다. 

특히, **통계적 검정력(Power)**과 **표본 크기**는 NGS 연구의 성공 여부를 결정하는 중요한 요소입니다. 통계적 검정력이란 실제로 효과가 존재할 때, 실험을 통해 해당 효과를 검출할 수 있는 확률을 의미합니다. 즉, 검정력이 높을수록 실험 결과의 신뢰성을 확보할 수 있습니다. 표본 크기는 연구 대상으로 삼는 개체 수를 의미하며, 통계적 검정력과 밀접한 관련이 있습니다. 일반적으로 표본 크기가 클수록 통계적 검정력이 높아지지만, NGS 실험의 경우 비용적인 제약으로 인해 무작정 표본 크기를 늘릴 수는 없습니다. 

제공해주신 자료 에 따르면, NGS 기반 실험의 전력 분석은 기존의 마이크로어레이 기반 실험보다 훨씬 복잡하다고 합니다. 그 이유는 NGS 데이터가 가지는 고유한 특징 때문입니다. 첫째, NGS 데이터는 **읽기 깊이(Read Depth)**와 **읽기 분산(Read Dispersion)**과 같은 요소들을 고려해야 합니다. 읽기 깊이는 특정 유전자 영역이 시퀀싱된 횟수를 의미하며, 읽기 분산은 각 유전자 영역에 대한 읽기 횟수의 변동을 나타냅니다. 둘째, NGS는 DNA 시퀀싱, RNA 시퀀싱, 메타게놈 시퀀싱 등 다양한 분야에 활용될 수 있으며, 각각의 적용 분야에 따라 데이터의 특성과 분석 목표가 달라지기 때문에 전력 분석 방법 또한 다르게 적용되어야 합니다.

NGS 기반 실험에서 통계적 검정력과 표본 크기를 정확하게 계산하기 위해서는 다양한 요소들을 종합적으로 고려해야 합니다. 예를 들어, 연구 목표, 데이터 유형, 분석 방법, 효과 크기, 유의 수준, 예산 등을 고려하여 최적의 표본 크기를 결정해야 합니다.  

**결론적으로, NGS 기반 실험의 성공을 위해서는 연구 설계 단계에서부터 통계적 검정력과 표본 크기에 대한 심층적인 고려가 필수적입니다.** NGS 데이터의 복잡성과 다양한 연구 목표를 고려하여 적절한 전력 분석 방법을 적용하고 최적의 표본 크기를 결정함으로써, 연구 결과의 신뢰성을 확보하고 효율적인 연구를 수행할 수 있습니다. 


결론적으로, NGS 기반 실험의 성공을 위해서는 연구 설계 단계에서부터 통계적 검정력과 표본 크기에 대한 심층적인 고려가 필수적입니다. 결국 잘 해야한다는 얘기 되겠습니다. 

샘플 개수가 작으면 유의미한 결과를 도출 할 수 없고, 샘플 개수가 너무 많이 필요하면 비용이 어마무시하게 많이 소요될 수 있으니깐요. 적절한 점을 잘 찾아야 할 듯 합니다.

우리들의 clova-x 曰 논문을 읽어보니 Negative Binomial 모델이 괜찮아 보인다고하네요.

모두들 10월의 마지막날을 잘 보내시기 바랍니다. :)


출처: @candyz_hyojung


일요일, 10월 06, 2024

HIV 약물 내성 검사에서도 두각을 나타내는 NGS!!

2020년도에 나온 HIV-1 약제 저항성을 확인하는 NGS 분석 파이프라인 비교 논문이 있어 한번 가져와봤습니다. 제목은 Performance comparison of next generation sequencing analysis pipelines for HIV-1 drug resistance testing 입니다. 

DOI: 10.1038/s41598-020-58544-z



clova-x

제목: HIV-1 약물 내성 테스트와 차세대 시퀀싱 분석 파이프라인의 성능 비교

인간면역결핍 바이러스(HIV)는 인체의 면역체계를 손상시켜 감염이나 암과 같은 질병에 취약하게 만드는 바이러스입니다. HIV에 감염된 사람들은 항레트로바이러스 약물을 복용하여 바이러스의 복제를 억제하고 건강을 유지합니다. 그러나 시간이 지남에 따라 바이러스는 약물에 대한 내성을 발전시킬 수 있으며, 이는 약물의 효과를 감소시켜 치료에 어려움을 초래할 수 있습니다.

이러한 내성 문제를 해결하기 위해 과학자들은 HIV-1 약물 내성 테스트를 개발하였습니다. 이 테스트는 바이러스가 약물에 대해 얼마나 내성을 가지고 있는지를 측정하여 의사들이 적절한 치료 계획을 수립할 수 있도록 돕습니다. 초기에는 Sanger 시퀀싱 기술을 사용하여 내성 테스트를 수행하였으나, 이 기술은 20% 미만의 변이를 감지하는 데 한계가 있었습니다.

최근에는 차세대 시퀀싱(NGS) 기술이 발전하여 HIV-1 약물 내성 테스트에 NGS 분석을 사용하게 되었습니다. NGS 기술은 훨씬 더 높은 해상도와 민감도를 제공하여 소수의 내성 변이를 감지할 수 있습니다. 이를 통해 의사들은 더욱 정확한 치료 계획을 수립할 수 있게 되었습니다.

다양한 NGS 분석 파이프라인이 개발되어 HIV-1 약물 내성 테스트에 사용되고 있습니다. 이러한 파이프라인들은 각각의 특성과 성능을 가지고 있으며, 이를 비교하여 최적의 분석 방법을 선택하는 것이 중요합니다. 한 연구에서는 다섯 가지 NGS 분석 파이프라인(HyDRA, MiCall, PASeq, Hivmmer, DEEPGEN)을 비교하였습니다.

특히, 이 연구에서는 낮은 빈도의 아미노산 변이(AAV)에 대한 각 파이프라인의 성능을 중점적으로 확인하였습니다. AAV는 바이러스의 유전자 서열에서 드물게 발생하는 변이로, 약물 내성과의 연관성이 있을 수 있습니다. 이를 정확하게 감지하는 것은 치료 계획 수립에 매우 중요합니다.

연구 결과, 모든 파이프라인은 1~100%의 빈도 범위에서 AAV를 검출하였으며, 1~20%의 빈도를 가진 AAV를 검출하는 민감도는 문제가 되지 않았습니다. 그러나 AAV 빈도가 2% 미만일 때 특이도가 크게 감소하는 것으로 나타났습니다. 이는 AAV 호출 및 보고의 확실한 특이성을 위해 2% 임곗값이 더 신뢰할 수 있는 보고 임곗값일 수 있다는 것을 시사합니다.

결론적으로, HIV-1 약물 내성 테스트는 바이러스의 약물 내성을 정확하게 측정하여 효과적인 치료를 가능하게 하는 중요한 도구입니다. NGS 분석 기술의 발전으로 인해 소수의 내성 변이를 감지할 수 있게 되었으며, 이를 통해 보다 정확한 치료 계획을 수립할 수 있게 되었습니다. 앞으로도 NGS 분석 파이프라인의 성능을 지속적으로 개선하고 표준화하여 보다 신뢰성 높은 약물 내성 테스트를 제공하는 것이 필요합니다.



chatGPT

HIV-1 약물 저항성 검사는 왜 중요할까요? HIV-1은 에이즈(AIDS)를 일으키는 바이러스로, 적절한 항레트로바이러스 치료(ART)를 통해 억제할 수 있습니다. 그러나 HIV-1은 매우 빠르게 변이를 일으킬 수 있는 특성을 가지고 있어, 시간이 지나면 일부 바이러스가 약물에 저항성을 가지게 될 수 있습니다. 이렇게 변이된 바이러스는 약물 치료가 실패하도록 만들고, 환자의 건강 상태를 악화시킬 수 있습니다. 이 때문에 HIV-1 감염 환자들의 약물 저항성 여부를 지속적으로 확인하는 것이 매우 중요합니다.

### NGS 기술을 이용한 약물 저항성 검사

전통적으로 HIV-1 약물 저항성 검사는 상거 염기서열 분석법(Sanger sequencing)을 사용했습니다. 하지만 이 방법은 바이러스 변이를 20% 이상 포함한 경우에만 탐지할 수 있어, 저빈도의 변이는 감지되지 않는 한계가 있습니다. 이 문제를 해결하기 위해 차세대 시퀀싱(NGS) 기술이 도입되었습니다.

NGS는 매우 높은 해상도로 바이러스의 유전 정보를 분석할 수 있어, 1% 미만의 변이까지도 감지할 수 있습니다. 이러한 저빈도의 변이, 특히 약물 저항성과 관련된 아미노산 변이(AAV)를 감지하는 것은 매우 중요한데, 이 변이들이 축적되면 시간이 지나 약물 저항성을 유발할 수 있기 때문입니다. NGS를 통해 이러한 저빈도 변이를 더 정확하게 감지할 수 있기 때문에, HIV-1 치료 과정에서 더욱 정밀한 약물 저항성 모니터링이 가능해졌습니다.

### 다양한 NGS 분석 파이프라인 비교의 필요성

NGS 분석 결과를 해석하기 위해서는 여러 단계의 분석 과정이 필요합니다. 이때, 데이터 처리를 위한 소프트웨어인 ‘분석 파이프라인’을 사용하게 되는데, HIV-1 약물 저항성 검사를 위한 여러 종류의 파이프라인이 개발되었습니다. 이 파이프라인들은 저마다 다른 방식으로 데이터를 처리하고 변이를 감지하며, 일부는 특정 저빈도 변이를 잘 감지하지 못하는 경우도 있습니다.

이번 연구에서는 HyDRA, MiCall, PASeq, Hivmmer, DEEPGEN이라는 5개의 주요 NGS 분석 파이프라인을 비교하여, 저빈도 아미노산 변이를 얼마나 정확하게 감지하는지를 평가했습니다. 연구 결과, 각 파이프라인들은 1~100% 빈도의 변이를 잘 감지했지만, 2% 미만의 변이를 탐지할 때는 성능에 차이가 있었습니다. 특히, 1% 이하의 변이를 탐지하는 데 있어 일부 파이프라인의 특이도가 크게 떨어졌습니다. 따라서 연구팀은 2% 이상 빈도의 변이만을 보고하는 것이 보다 신뢰할 수 있는 결과를 제공할 수 있다고 제안했습니다.

### 결론

HIV-1 약물 저항성 검사는 환자의 치료 성공 여부를 결정하는 중요한 검사입니다. NGS 기술은 저빈도 변이까지 감지할 수 있는 강력한 도구이며, 이를 통해 더 정밀한 치료가 가능합니다. 그러나 NGS 데이터 분석에서 사용하는 파이프라인에 따라 결과가 달라질 수 있기 때문에, 이번 연구와 같이 다양한 파이프라인의 성능을 비교하고 표준화된 방법을 찾는 것이 중요합니다. 이를 통해 환자들에게 더 정확한 진단과 맞춤형 치료를 제공할 수 있을 것입니다.



gemini

**HIV-1 약물 내성 테스트를 위한 차세대 염기서열 분석 파이프라인의 성능 비교**

**소개**

HIV-1 약물 내성 테스트는 HIV 감염자를 치료하는 데 중요한 도구입니다. 이 테스트는 HIV 바이러스가 약물에 내성을 가지고 있는지 여부를 판단하여 적절한 치료를 결정할 수 있도록 도와줍니다.

**HIV-1 약물 내성 테스트**

HIV-1 약물 내성 테스트는 HIV 바이러스의 유전자를 분석하여 약물 내성을 판단하는 기술입니다. 기존에는 Sanger 염기서열 분석이 주로 사용되었지만, 최근에는 차세대 염기서열 분석 (NGS) 기술이 도입되고 있습니다.

**NGS 분석**

NGS 분석은 고속 염기서열 분석을 통해 HIV 바이러스의 유전자를 분석하여 약물 내성을 판단할 수 있습니다. NGS 분석은 Sanger 염기서열 분석보다 더 정확하고 민감하게 약물 내성을 검출할 수 있습니다.

**NGS 분석 파이프라인 비교**

현재 다양한 NGS 분석 파이프라인이 개발되어 있습니다. 이 파이프라인들은 HIV 바이러스의 유전자를 분석하는 방법과 약물 내성을 판단하는 알고리즘 등에서 차이가 있습니다.

**이 연구의 목적**

이 연구에서는 HIV-1 약물 내성 테스트에 대한 다섯 가지 NGS 파이프라인의 성능을 비교하였습니다. 이를 통해 낮은 빈도의 아미노산 변이를 검출하는 능력과 특이성을 평가하였습니다.

**연구 결과**

연구 결과, 모든 파이프라인은 모든 범위의 빈도(1~100%)에서 아미노산 변이를 감지할 수 있으며 참조 빈도 값과 비교하여 선형성이 좋았습니다. 낮은 빈도의 아미노산 변이(1~20% 빈도)를 검출하는 감도는 모든 파이프라인에서 덜 우려되는 반면, 아미노산 변이 빈도가 2% 미만인 경우 특이성이 급격히 감소했습니다. 이는 2% 임계값이 아미노산 변이 호출 및 보고의 보장된 특이성을 위한 더 신뢰할 수 있는 보고 임계값일 수 있음을 시사합니다. 낮은 빈도의 아미노산 변이에 대해서는 파이프라인 간에 더 많은 변이가 관찰되었는데, 이는 NGS 판독 품질 관리 전략의 차이 때문일 수 있습니다.

**결론**

이 연구의 결과는 NGS 기반 HIVDR 데이터 분석을 위한 표준화된 전략, 특히 소수 HIVDR 변이 검출을 위한 표준화된 전략의 필요성을 강조합니다.



NotebookLM

## HIV 약물 내성 검사: NGS 분석의 역할과 중요성

HIV-1 감염 치료에 있어 바이러스가 특정 약물에 내성을 갖는지 판별하는 약물 내성 검사는 매우 중요합니다. 환자에게 가장 효과적인 치료법을 결정하고, 바이러스의 확산을 막기 위해서는 정확한 내성 검사가 필수적입니다.

과거에는 Sanger 시퀀싱이라는 방법을 통해 HIV-1 약물 내성 검사를 시행했습니다. 하지만 이 방법은 20% 미만의 낮은 빈도로 존재하는 소수 내성 변이(MRV)를 검출하는 데 한계가 있었습니다. **MRV는 바이러스가 약물의 효과를  약화시키고, 치료에 실패할 가능성을 높이기 때문에, 더욱 정확한 검출 방법이 요구되었습니다.**

최근에는 차세대 염기서열 분석(NGS) 기술이 발전하면서, HIV-1 약물 내성 검사에 활용되고 있습니다. **NGS는 Sanger 시퀀싱보다 MRV를  식별하는 데 훨씬 뛰어난 해상도와 감도를 제공할 뿐만 아니라, 검사 시간을 단축하고, 대량 검사를 가능하게 하여 비용 절감 효과까지 제공합니다.** 

그러나 **NGS 기반 HIV-1 약물 내성 검사 방법이 다양하게 개발되면서 분석 결과의 정확성과 신뢰성을 확보하기 위해 표준화된 분석 방법 및  결과 비교 연구의 필요성이 제기되었습니다.** 이에 따라 본 연구에서는 **5가지 NGS 분석 파이프라인(HyDRA, MiCall, PASeq, Hivmmer, DEEPGEN)을 사용하여 낮은 빈도의 아미노산 변이(AAV) 검출 성능을 비교 분석했습니다.**

연구 결과, 모든 NGS 분석 파이프라인은 1~100%의 다양한 빈도에서 AAV를 검출했으며, 높은 정확도를 보였습니다. 하지만 2% 미만의 매우 낮은 빈도의 AAV를 분석했을 때, 일부 파이프라인에서는 AAV 검출의 정확성이 떨어지는 것을 확인했습니다. **특히, 1% 미만의 AAV를 분석했을 때 정확성이 크게 감소하는 경향을 보였습니다.** 

**이러한 결과는 NGS 기반 HIV-1 약물 내성 검사에서 2% 미만의 매우 낮은 빈도의 AAV 검출 결과는 신뢰도에  주의가 필요하며,  2%를  기준으로  결과를  해석하는  것이  바람직할  수  있음을  시사합니다.**

본 연구는 NGS 분석 파이프라인의 성능을 비교 분석함으로써, NGS 기반 HIV-1 약물 내성 검사의 정확성 및 신뢰성을 향상시키고 표준화된 분석 방법을  확립하는 데 기여할 것으로 기대됩니다.


오늘 LLM들 중에서는 gemini가 조금 부족하게 대답해준 듯 합니다. 생각보다 clova-x가 잘 대답해 줬고, NotebookLM이 꾸준하게 좋은 답변을 해주는듯 하네요

여튼 논문 내용은 결과적으로 다섯개의 NGS 분석 파이프라인을 비교했는데, 고만고만하고 결과적으로 2% frequency 미만의 빈도 해석 시 신뢰도에 문제가 있어 보이니 약물 내성 검사 시에는 2% frequency만 확인하면 될 것 같다고 너무 말만 두루뭉실하게 하고 있다는 느낌이 드네요.

LLM이 요약한 내용이 중에 coverage내용이 누락되었는지 해서 본문을 봤는데... frequency의 coverage에 대한 내용은 아예 언급이 없네요. 2% frequency에 대한 통계적 자료가 있었으면 좋았을 것 같은데 그런 내용은 없이 NGS라서 1% frequency도 잘 잡았는데 2% 미만의 frequency에서 신뢰도에 문제가 있으니 2% frequency 이상의 변이만 결과로 사용해라 라고 하고 있어서 살짝 아쉽네요.

아마 논문에서 사용한 5개 파이프라인에서 frequency 계산 시 coverage를 고려해서 결과를 내주지 않나 합니다.

주말 잘 마무리하시기 바랍니다. :)





출처: @ye._.vely618

일요일, 11월 19, 2023

NGS을 임상에 사용하기 위한, 5년의 시간

최근에 임상실험실에서 NGS 서비스를 시작한다고 하는 내용들의 뉴스..
를 신기하게 보시는 분들도 물론 있으실겁니다.

그러나 전공자나 업계에 몸 담고 있는 분들에게는 그리 신기하지 않은.. "아.. 어디 임상실험실에서 NGS 서비스를 하는구나" 정도로.. 어느 실험실에서 NGS로 검사를 해준다라고.. 정도의 수준일겁니다.


하지만 10년전만해도 NGS가 무슨 임상실험실에서 검사 서비스로 가당키나 한 분석 방법이냐고 하시는 분들이 대다수였을 때에 5여년동안 데이터를 쌓아서 NGS 플랫폼의 타당성을 입증한 논문이 있어 한번 가져와봤습니다.

Next generation sequencing for clinical diagnostics: Five year experience of an academic laboratory

DOI: 10.1016/j.ymgmr.2019.100464

태평양 건너 있는 미국 미네소타 대학교의 임상 실험실에서 2012년부터 2017년 동안, 자그마치 5년동안 NGS로 임상 진단 검사를 실시했던 데이터를 차곡 차곡 잘 수집/축적하여 공개한 내용으로 

2012년 8월부터 2014년 3월 까지는 568 유전자 영역의 SureSelect 패널을,

2014년 4월 부터 2017년 9월 까지는 일루미나의 TruSightOne 패널을,

2017년 10월부터 2017년 12월 까지는 TruSightOne 확장 패널을 사용하여

각각 349개, 2058개, 102개 검체, 모두 2059건의 검사를 실시했다고 하네요

전반적으로 25% 진단율을 유지하였다고 하고, 불확실한 의미 변이인 VUS 수가 2012년도에는 75%정도였는데 2017년도에서는 50%정도로 감소되었다고 합니다. 사실 지금 다시 하면 25%정도로 더 감소되어있지 않을까 하는 생각도 드네요. 

그리고 다양한 질병들에 대해서 진단을 하였는데 질병마다 진단율의 차이를 보였고, 피부병이나 청력손실, 안과질환 같은 경우에는 진단율이 40% 이상의 높은 진단율이, 소화기나 호흡기 질환의 진단율은 10%로 낮았다고 하는데 사실 이건 유전적 원인과 관계가 있냐없냐가 더 중요한 요인으로 보이네요.

결과적으로 이 연구 결과, 5년동안 2천개 넘는 검체를 검사해봤는데 NGS가 임상진단에 사용할 수 있는 유용성을 입증하였다고 생각되고, NGS가 임상 진단 부문에서 사용 할 수 있는 가시적은 근거자료로 활용되어 병원관리자들이 NGS 인프라에 투가하도록 설득 할 수 있는 자료로 사용 할 수 있다고... ??

그거까지는 난 모르겠고, 이전의 많은 연구진들의 연구 결과로 말미암아 이제는 NGS 검사가 우리 생활에 생각보다 많이 사용되고 있다는 것은 맞는 얘기인것 같습니다.

이전에 연구진들의 노고가 아니었다면 아직도 연구수준에서 벗어나지 못했을것 같습니다.

가끔 이런 논문들을  한번 들춰보는것도 나쁘지는 않아서 한번씩 꺼내볼 생각입니다.




출처: @ye._.vely618


토요일, 10월 14, 2023

FFPE 처리된 암조직의 NGS 결과를신뢰할 수 있을까?

몇년전에도 NGS 분석 결과를 그냥 불신하는 분들은 당연히 계셨고 지금도 의심의 눈초리로 바라보는 분들이 없지는 않을겁니다. 물론 저도 NGS를 믿으십시요! 라고는 하지 않습니다. NGS가 모든 문제를 해결 해 주지는 않으니깐요. 그래도 진단에서 NGS는 꽤 나 중요한 위치를 차지하고 있고 효용성을 증명하고 있는데 일방적인 불신은 좋지 않겠죠.

2015년, 아직 NGS으로 진단하기에는 아직 무리이지 라는 의견이 지배적이었고, 그런 편견을 벗어나기 위해 부단히도 애를 쓰고 있었던 때인지는 잘 모르겠으나 그래도 아직 시기상조라는 분위기가 지배적이었던 시절 끊임없이 가능성을 보여주고자 노력했던 연구팀의 논문이 있어 한번 들고 와봤습니다.

그냥 일반 조직에서 시퀀싱한 결과도 믿을 수 없다고 하던 시절, FFPE처리된 샘플에서 BRCA1/2의 somatic 변이 검출을 신뢰 할 수 있다는 것을 보여주는 논문 되겠습니다.

"A reliable method for the detection of BRCA1 and BRCA2 mutations in fixed tumour tissue utilising multiplex PCR-based targeted next generation sequencing" 이라는 제목의 논문입니다.

DOI: 10.1186/s12907-015-0004-6


FFPE, 병리검사를 위해 띠어낸 조직을 장기 보관하기 위해서 처리하는 방법인데, 여기에 사용되는 praffin과 formaldehyde가 DNA 한테는 쥐약이죠..

그래서 FFPE 전용 DNA추출 키트도 나오고 있는데 이미 fragment되어 있고, damage받은 DNA 뽑아서 NGS 돌려봤자 그거 믿을 수 있겠냐? 라는게 FFPE 샘플을 가지고 NGS 수행후 분석 결과를 잘 못믿겠다고 하니 그래서 그거 우리가 확인 했어. 되겠습니다.

그래서 일단 제일 접근하기 쉬운 BRCA1/2를 타겟으로 하였고, 어차피 FFPE 샘플이니 서열들이 조각들 나 있을 테니 증폭시켜서 우선 DNA양을 늘리고 NGS해서 분석 해보자가 가장 좋은 선택지 아니었나 싶습니다.

그래서 다양한 변이 샘플 확보하고 NGS 키트 중에 여러 키트 (GeneRead V1, V2의 BRCA1/2와 Ion AmpliSeq BRCA1/2)로 상호 비교 실험도 했고, Sanger 실험으로 확인도 하였다고 합니다.

그래서 결과적으로 FFPE 샘플에서 추출한 DNA로 NGS 분석으로 돌연벼이를 확인 할 수 있었고, 일부 rare한 frequency를 가지고 있는 변이의 경우 Sanger로는 찾기 힘들었으나 NGS로는 찾을 수 있었다.

그러나 그래도 아직 germline을 분석(이 연구에서는 somatic BRCA1/2 변이를 탐지 했습니다.)을 대체하는 용도로는 안되고, 환자에게 득이 될 수 있는 PARP 억제요법을 사용할지 여부를 확인하는 용도로는 사용할 수 있을 것 같다라고 마무리하고 있습니다.

이처럼 그전까지는 카더라로마 떠돌었떤 근거없는 소문을 여러 다양한 케이스와 방법을 통해 벤치마킹을 하여 충분히 사용할 수 있는데? 라는 근거를 제시함으로써, 좋은 기술을 적재적소에서 사용 할 수 있게 해주는 것도 굉장히 중요한 일 인듯 합니다.

그럼 15년도에 FFPE로 somatic 변이를 NGS로 수행해서 변이를 찾을 수 있지만 제한적이라고 했는데, 지금은 기술이 더 발달 했는데, 그 제한적인 사용처가 극복이 되었는지? 아니면 그대로 별 차이가 없는지를 조만간 확인해보는 시간을 가지면 좋겠네요.

그럴 수 있기를 제발~  :)


출처: @ye._.vely618