레이블이 in-silico PCR인 게시물을 표시합니다. 모든 게시물 표시
레이블이 in-silico PCR인 게시물을 표시합니다. 모든 게시물 표시

수요일, 10월 16, 2024

COVID-19를 더 빠르고 정확하게 진단하기위한 PCR 프라이머 디자인 방법

오늘은 국내 연구진에 의해서 고안된 COVID-19의 진단 프라이머 디자인 방법에 대한 논문을 가져와봤습니다. 논문 제목은 Identification of conserved regions from 230,163 SARS-CoV-2 genomes and their use in diagnostic PCR primer design 입니다.


기존 COVID-19 진단에 사용하고 있었던 영역 외에 GISAID db에 공개되어 있는 SARS-CoV-2 유전체 서열을 확인해서 새로운 보존된 영역으로 COVID-19를 탐지 할 수 있는 Primer Set를 디자인한 내용되겠습니다.


gemini
**SARS-CoV-2 바이러스의 보존된 영역을 기반으로 PCR 프라이머를 설계하는 방법**
**배경**
SARS-CoV-2는 코로나바이러스과에 속하는 폐렴 유발 바이러스로, 2019년 말 중국에서 처음 발생한 COVID-19 감염증의 원인이다. SARS-CoV-2는 RNA 바이러스로, 게놈은 약 30,000개의 뉴클레오타이드로 이루어져 있다. SARS-CoV-2는 변이를 일으키며, 이로 인해 PCR 프라이머가 바이러스를 검출하지 못하는 경우가 발생할 수 있다.
**방법**
이 연구에서는 NCBI SARS-CoV-2 Resources 및 GISAID EpiCoV 데이터베이스에서 230,163개의 SARS-CoV-2 전체 게놈을 수집하였다. 이 중에서 5' 및 3' 비번역 영역을 제거하고 중복 게놈을 제거하여 32,483개의 게놈을 남겼다. 이후 32,483개의 게놈을 기준 서열에 맞춰 정렬하고 보존된 서열을 추출하였다. 보존된 서열을 기반으로 프라이머 세트를 설계하고, in silico PCR 및 RT-qPCR로 평가하였다.
**결과**
17개의 보존된 서열 (총 4.3 kb) 중 nsp2 및 ORF3a 유전자를 표적으로 하는 2개의 프라이머 세트가 99.9% 이상의 in silico 증폭 범위를 보였다. 또한, 이들 프라이머 세트는 9개의 SARS-CoV-2 변이 RNA 샘플 (Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Iota 및 Kappa)을 실험적 RT-qPCR 검증에서 성공적으로 검출하였다.
**저자의 의견**
이 연구는 SARS-CoV-2의 보존된 서열을 기반으로 PCR 프라이머를 설계하는 새로운 방법을 제시하였다. 이 방법은 기존의 다중 서열 정렬 방법에 비해 훨씬 빠르고 정확하며, 새로운 SARS-CoV-2 변이가 출현할 경우 쉽게 적용할 수 있다.
이 연구는 SARS-CoV-2의 진단에 있어서 매우 중요한 발견이다. 이 연구를 통해 개발된 PCR 프라이머는 기존의 프라이머보다 더욱 정확하고 신속하게 SARS-CoV-2를 검출할 수 있을 것이다. 이는 COVID-19 감염증의 진단 및 치료에 큰 도움이 될 것으로 기대된다.


chatGPT
COVID-19가 전 세계적으로 확산되면서, 이 바이러스를 정확하고 빠르게 진단하는 것이 매우 중요해졌습니다. COVID-19를 일으키는 SARS-CoV-2 바이러스는 RNA 바이러스로, 계속해서 변이합니다. 이러한 변이는 기존의 진단 방법이 잘 작동하지 않게 만들 수 있기 때문에, 새로운 변이체에도 적용할 수 있는 진단 방법을 만드는 것이 매우 중요합니다. 이번 연구에서는 SARS-CoV-2의 변이에도 영향을 받지 않는 보존된 유전자 영역을 찾아내어 이를 이용한 PCR 진단법을 설계한 내용을 소개하고 있습니다.
### 연구 배경
PCR(Polymerase Chain Reaction, 중합효소 연쇄 반응)은 DNA나 RNA와 같은 유전물질을 증폭시키는 방법으로, COVID-19 진단에 널리 사용되고 있습니다. 특히 RT-qPCR은 바이러스의 RNA를 검출하는 데 사용되며, 현재 가장 신뢰할 수 있는 진단 방법 중 하나입니다. 하지만 SARS-CoV-2는 빠르게 변이하는 바이러스이기 때문에, 변이체가 기존 진단 프라이머(유전자 증폭을 위한 짧은 서열)를 인식하지 못하면 검출되지 않을 수 있습니다. 이런 이유로, 연구진은 변이에도 영향을 받지 않는 보존된 유전자 영역을 찾아 그에 맞는 새로운 진단 프라이머를 설계하고자 했습니다.
### 연구 방법
연구진은 전 세계에서 수집된 230,163개의 SARS-CoV-2 유전체 데이터를 분석했습니다. 이 데이터를 이용해 여러 변이체에도 변하지 않는 보존된 유전자 서열을 찾아내고, 그 서열을 기반으로 PCR 프라이머를 설계했습니다. 연구 과정에서 중복되는 서열이나 불완전한 서열을 제거하고, 고속 서열 정렬 방법을 사용하여 보존된 영역을 정확하게 식별했습니다. 총 17개의 보존 서열이 확인되었으며, 그중 두 개의 프라이머 세트(nsp2와 ORF3a 유전자 영역)를 선택하여 실험적으로 검증했습니다.
### 연구 결과
연구진이 설계한 두 개의 프라이머 세트는 실험에서 매우 높은 정확도를 보였습니다. 230,163개의 SARS-CoV-2 유전체를 대상으로 한 컴퓨터 시뮬레이션에서 99.9% 이상의 검출률을 기록했으며, 실제로 알파, 베타, 감마, 델타 등 주요 변이체 9종을 검출하는 데 성공했습니다. 이 결과는 새로운 변이체가 등장하더라도, 이러한 프라이머를 사용하면 정확한 진단이 가능하다는 것을 시사합니다.

### 연구자의 의견
연구진은 기존의 PCR 진단법이 주로 특정 유전자(예: RdRp, E, N, S 유전자)를 타깃으로 한 것과 달리, 이번 연구에서는 새로운 유전자(nsp2, ORF3a)를 타깃으로 한 진단법을 개발한 것이 큰 차별점이라고 설명했습니다. 이러한 접근법은 변이체가 계속해서 등장하는 상황에서 새로운 타깃을 찾아내는 데 중요한 전략이 될 수 있다고 강조했습니다.
이 연구는 향후 SARS-CoV-2뿐만 아니라 다른 팬데믹 바이러스가 발생할 경우에도 진단법을 설계하는 데 중요한 기여를 할 것으로 보입니다. 진단의 정확도를 높이고 변이에 대응할 수 있는 방법을 지속적으로 개발하는 것이 코로나와 같은 바이러스 질환의 조기 발견과 확산 방지에 필수적입니다.
### 결론
이 연구는 COVID-19와 같은 감염병을 진단하는 데 있어 바이러스 변이에 대응할 수 있는 새로운 PCR 진단법을 제시했습니다. SARS-CoV-2 바이러스의 유전체 데이터를 광범위하게 분석해 보존된 유전자 영역을 찾아낸 이 방법은 앞으로도 변이체가 계속해서 등장하는 상황에서 매우 유용할 것입니다.


NotebookLM
## 코로나19 진단, 더 정확하고 빠르게: 새로운 PCR 프라이머 디자인 방법
**SARS-CoV-2 바이러스는 끊임없이 변이를 일으키며 전 세계를 위협하고 있습니다.** 기존 PCR 검사에 사용되는 프라이머는 바이러스 유전자의 특정 부분을 표적으로 하기 때문에, 바이러스 변이가 발생하면 그 부분의 유전자 서열이 바뀌어 PCR 검사의 정확도가 떨어질 수 있습니다. 
**이 연구는 23만 개가 넘는 SARS-CoV-2 게놈 데이터를 분석하여 바이러스 변이에도 잘 작동하는 새로운 PCR 프라이머를 디자인하는 방법을 제시합니다.** 연구팀은 NCBI와 GISAID 데이터베이스에서 수집한 230,163개의 SARS-CoV-2 전체 게놈 서열을 분석했습니다. 
**연구팀은 먼저 방대한 게놈 데이터를 효율적으로 처리하기 위해 5'-/3'-비번역 영역을 제거하고 중복되는 서열을 제거하여 데이터 크기를 줄였습니다.** 이 과정을 통해 분석에 사용될 데이터의 크기를 85.8% 줄일 수 있었습니다.
**다음으로, 연구팀은 참조 게놈 서열을 기반으로 다중 서열 정렬(MSA)을 수행하여 바이러스 게놈에서 변이가 거의 없는 보존된 영역(CS)을 찾았습니다.** 이때 ViralMSA라는 도구를 사용하여 빠르게 분석을 수행했습니다.  기존의 MSA 도구는 방대한 데이터를 처리하는 데 시간이 오래 걸리지만, ViralMSA는 1분 이내에 분석을 완료할 수 있었습니다. 연구팀은 이 과정에서 얻은 17개의 CS를 이용하여 PCR 프라이머를 설계했습니다.
**연구 결과, nsp2 및 ORF3a 유전자를 표적으로 하는 두 종류의 프라이머 세트가 높은 증폭 효율을 보였습니다.** 이 프라이머들은 기존 프라이머 세트와 비교했을 때, 특히 Delta 변이 바이러스를 검출하는 데 뛰어난 성능을 보였습니다. 또한, 실험을 통해 Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Iota, Kappa 등 9가지 주요 변이 바이러스를 모두 성공적으로 검출할 수 있음을 확인했습니다.
**이 연구는 새로운 변이 바이러스 출현에도 빠르게 대응할 수 있는 PCR 프라이머 디자인 전략을 제시했다는 점에서 큰 의미가 있습니다.** 연구팀은 앞으로 더 많은 SARS-CoV-2 게놈 서열 데이터가 공개될수록 '진정한' CS를 찾는 것이 더 어려워질 것이라고 예상하며, 정기적인 데이터 업데이트와 대규모 협력 연구의 필요성을 강조했습니다. 
**하지만 이 연구에서는 Omicron 변이 바이러스에 대한 실험적 검증은 수행되지 않았습니다.** Omicron 변이는 연구 당시 주요 변이가 아니었고, 국내에서 Omicron RNA 샘플을 구할 수 없었기 때문입니다. 연구팀은 in silico PCR 분석 결과를 통해 설계된 프라이머가 Omicron 변이를 검출하는 데 충분한 성능을 보일 것으로 예상했습니다.
**이 연구는 앞으로 더 정확하고 효율적인 코로나19 진단 검사법 개발에 중요한 기반을 제공할 것으로 기대됩니다.**

기존 MSA대신에 ViralMSA를 사용했다는데 나중에 한번 활용해보면 좋을것 같습니다. 기존 MSA tool을 사용해서 보존된 영역인 CS(Conserved Sequences)를 찾는게 생각보다 쉽지가 않더라구요 ㅎㅎ 
여하튼 여기서는 virus를 대상으로 시도했는데 꼭 virus로 한정할 필요는 없겠죠?
Omicron 변이들도 포함되었다면 더 좋았을 것 같은데, 이 방법을 활용해서 PCR로 더 정확한 진단 방법을 개발하게 되면 좋을 듯 합니다. :)


출처: @wm_ohmygirl


화요일, 9월 28, 2021

isPcr 사용법

내가 디자인한 (아마도 업체나 primer3에서 디자인된..) 프라미어 서열이 진짜 잘 작동할까? 궁금하신 분들이 있겠죠..

그래서 이것 저것 컴퓨터 하는 애들이 얘기하는 ncbi에 들어가서 blast라는 것도 한번 돌려보고 ucsc에 blat이라는 것도 있다던데 그것도 한번 돌려서 확인해보라는데... 

그래서 kent옹께서 우리들과 같은 꼬꼬마들을 위해서 만들어 놓은 사이트가 바로
UCSC In-silico PCR 되겠습니다.

물론 사이트에서 하나씩 할 수도 있고 
당근 local 서버에 다운받아서도 할 수 있습니다.

다운로드는 >여기< 로

다운로드 받은 isPcr.zip 파일을 압축 푼 후 
>chmod 755 isPcr 
>./isPcr
하면 내 컴퓨터(운영체제가 윈도우라고는 안했다)에서 실행 가능합니다.

>isPcr <database> <query> < output>
database: 그냥 fasta파일의 human genome넣어주면되고
query: primer서열이 들어있는 파일인데 3개 컬럼으로 이뤄진 파일이 input으로 사용됩니다.
name, forward primer, reverse primer 컬럼 구분은 space나 tab으로 구분해주면되는데..
어떤건지 정확히는 다시 해봐야 알겠네요.. :)