레이블이 CAP인 게시물을 표시합니다. 모든 게시물 표시
레이블이 CAP인 게시물을 표시합니다. 모든 게시물 표시

금요일, 1월 16, 2026

암 유전자 변이 해석 가이드라인 점검 연구 요약

암 유전자 변이 해석 시, 변이를 어떻게 해석해야하는지에 대해서 우왕좌왕 할 때 AMP, ASCO, CAP 기관에서 제작한 암 유전자 변이 해석 가이드라인 덕분에 그나마 같은 환자가 병원마다 다른 해석을 받는.. 아.. 물론 같은 환자가 병원마다 다른 해석을 받을 수는 있습니다. 근데 그 해석이 다르다는게 큰 범주에서 차이가 나지 않는 것이지 세세하게 들어가면 좀 차이는 있을 수 있습니다. 그래도 암 유전자 변이 해석 시 참고할 만한 가이드라인 덕분에 그래도 터무니없이 해석하지는 않고 있다고 생각합니다. 

여하튼 그래도 힘들게 가이드라인을 만들었는데 병원들이 잘 사용하고 있는지, 이 가이드라인을 사용할 때 해석의 의견들이 일치하고 있는지 한번 점검을 해봤다고 합니다. 제목은 Assessments of Somatic Variant Classification Using the Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists Guidelines으로 2020년에서 21년동안 가이드라인 사용여부, 사용한다면 해석한 결과들이 잘 일치하는지, 그리고 개선되어야하는 내용들에 대해서 조사를 했다고 합니다. 

NGS기반의 암 유전자 변이를 하는 의료기관이라면 이 가이드라인을 참고해서 해석을 해야지 그렇지 않다면 아마 해석을 거의 하지 못하지 않나 하는 생각이 드네요 

DOI: 10.1016/j.jmoldx.2022.11.002



clova-x

이 연구는 암 돌연변이 해석 및 보고에 관한 2017 표준 및 가이드라인의 임상 적용을 평가하고, 분류 불일치와 구현 장벽을 식별하기 위해 진행되었습니다.

1. **연구 배경**

   - 차세대 염기서열 분석(NGS) 기술의 발전과 비용 감소로 인해 종양 및 혈액학 악성 질환의 일상적인 분자 프로파일링이 가능해졌습니다.

   - 암 환경에서의 획득된 체세포 및 유전적 변이는 예측, 진단, 예후에 중요한 정보를 제공하며, 치료제 식별에도 기여합니다.

2. **2017 표준 및 가이드라인**

   - Association for Molecular Pathology, American Society of Clinical Oncology, College of American Pathologists가 공동으로 합의한 2017 표준 및 가이드라인은 암 돌연변이의 해석 및 보고를 위한 체계적인 프레임워크를 제공합니다.

   - 이 가이드라인은 세 가지 범주의 임상 및 실험적 증거(진단, 예후, 치료)를 고려하여 티어 시스템으로 정의됩니다.

3. **연구 방법론**

   - 134명의 참가자가 4건의 암 사례에서 11개의 변이를 대상으로 해석 챌린지에 참여했습니다.

   - 참가자들은 변이의 임상적 의미를 올바르게 분류했는지 확인하기 위해 설문 조사에 응답했습니다.

4. **결과 및 시사점**

   - 참가자 중 86%가 임상적으로 유의미한 변이, 불확실한 의미의 변이, 양성/가능성 있는 양성 변이를 올바르게 분류했습니다.

   - 그러나 59%만이 작업 그룹의 합의 의도와 일치하는 응답을 보였습니다.

   - 71%의 응답자는 2017 가이드라인을 수정 없이 또는 수정하여 구현했다고 답했으며, 이는 표준화된 체세포 변이 분류를 위해 가이드라인이 채택되고 있음을 나타냅니다.

5. **미래 개선 방향**

   - 작업 그룹은 더 세분화되고 포괄적인 분류 시스템과 교육 자원의 필요성을 강조하였습니다.

   - 다양한 수준의 지지 증거에 기반한 여러 변이 분류 시스템이 제안되었으며, 이를 통해 더 나은 합의 가이드라인 개발이 필요합니다.


gemini

[cite_start]이 블로그 포스트 초안은 전문적인 의학 논문인 **"AMP/ASCO/CAP 가이드라인을 이용한 체세포 변이 분류 평가"** [cite: 8]를 일반 독자들도 이해하기 쉽도록 요약 및 재구성한 것입니다. 암 진단의 정확성을 높이기 위한 의료진들의 노력과 현재의 과제를 다루고 있습니다.

---

## [블로그 포스트] 암 유전자 검사, 병원마다 결과가 같다면 얼마나 좋을까요? : 암 진단 표준화의 현주소

혹시 **'정밀 의료(Precision Medicine)'**라는 말을 들어보셨나요? 환자의 유전자를 분석해서 딱 맞는 항암제를 찾아내는 맞춤형 치료를 말합니다. 그런데 만약, 내 암세포 유전자 검사 결과를 A 병원에서는 "치료 가능한 변이"라고 하고, B 병원에서는 "의미 없는 변이"라고 한다면 어떨까요? 상상만 해도 혼란스럽죠?

오늘 소개할 연구는 바로 이런 혼란을 막기 위해 전 세계 병원들이 사용하는 **'암 유전자 변이 해석 규칙(가이드라인)'**이 실제로 현장에서 얼마나 잘 지켜지고 있는지, 그리고 어떤 문제점이 있는지 파헤친 흥미로운 보고서입니다.

---

### 1. 연구 배경: 암 유전자 해석의 '바이블'이 필요하다

[cite_start]과거에는 암을 진단할 때 조직의 모양만 봤다면, 최근에는 **차세대 염기서열 분석(NGS)** 기술 덕분에 암세포의 유전자 돌연변이(체세포 변이)를 정밀하게 찾아낼 수 있게 되었습니다[cite: 41].

[cite_start]문제는 발견된 돌연변이가 '암을 일으키는 나쁜 놈'인지, 아니면 '그냥 지나가는 행인'인지 구분하는 것이 매우 어렵다는 점입니다[cite: 47]. [cite_start]이를 해결하기 위해 2017년, 미국의 주요 병리학 및 종양학 학회들(AMP, ASCO, CAP)이 모여 **전 세계 공통의 '암 변이 해석 가이드라인'**을 만들었습니다[cite: 50, 51].

[cite_start]이 가이드라인은 변이를 증거의 확실성에 따라 **Tier I(강력한 임상적 의미)**부터 **Tier IV(양성/무해함)**까지 4단계로 나누는 체계를 제시했습니다[cite: 57, 58].

### 2. 연구 목적: 규칙은 만들어졌는데, 다들 잘 지키고 있나요?

가이드라인이 발표된 지 몇 년이 지났습니다. 연구팀은 다음과 같은 궁금증을 가지고 이 연구를 시작했습니다.

* [cite_start]**목적 1:** 전 세계 실험실들이 실제로 이 가이드라인을 잘 도입해서 쓰고 있는가? [cite: 83]

* [cite_start]**목적 2:** 동일한 암 유전자 데이터를 주었을 때, 모든 실험실이 **똑같은 결론(등급)**을 내리는가? [cite: 83]

* [cite_start]**목적 3:** 만약 결과가 다르다면, 가이드라인의 어느 부분이 헷갈리게 만드는가? [cite: 83]

### 3. 연구 방법: 전 세계 실험실 대상 '쪽지시험'과 '설문조사'

연구팀(VITAL Somatic Working Group)은 두 가지 방법으로 조사를 진행했습니다.

1.  **변이 해석 챌린지 (일종의 쪽지시험):**

    * [cite_start]폐암, 뇌종양, 백혈병 등 4가지 암 환자 케이스에서 발견된 **11개의 유전자 변이** 데이터를 참여자들에게 보냈습니다[cite: 100].

    * "자, 가이드라인에 맞춰서 이 변이들의 등급을 매겨보세요"라고 과제를 낸 것이죠. [cite_start]총 134명의 전문가가 참여했습니다[cite: 21].

2.  **실태 조사 (설문조사):**

    * [cite_start]실제 가이드라인 도입 여부와 사용 시 어려운 점 등을 묻는 설문조사를 진행했고, 220명이 응답했습니다[cite: 24, 141].

### 4. 연구 결과: '큰 틀'은 맞았지만 '디테일'은 달랐다

결과는 꽤 흥미로웠습니다. 절반의 성공과 절반의 과제가 드러났기 때문입니다.

#### 1) 긍정적인 결과: "위험한지 아닌지는 잘 구별합니다"

[cite_start]참여자의 **86%**는 임상적으로 중요한 변이(Tier I, II)와 그렇지 않은 변이(Tier III, IV)를 정확하게 구분해냈습니다[cite: 22, 163]. 즉, "이 환자에게 치료가 필요한가?"라는 큰 질문에는 대부분의 전문가가 일치된 의견을 보였습니다.

#### 2) 아쉬운 결과: "정확한 등급 매기기는 어려워요"

[cite_start]하지만 아주 구체적인 등급(Tier)과 임상적 의미(진단용인지, 예후용인지 등)까지 완벽하게 맞춘 비율은 **59%**에 불과했습니다[cite: 23, 163].

* [cite_start]**쉬운 문제:** 잘 알려진 유전자(예: *NRAS*) 변이는 정답률이 80% 이상으로 높았습니다[cite: 164].

* [cite_start]**어려운 문제:** 희귀한 변이(예: *PTCH1*, *PHF6*)나 증거가 애매한 경우에는 정답률이 40~50%대로 뚝 떨어졌습니다[cite: 165, 272].

#### 3) 현장의 목소리: "소프트웨어와 구체적 예시가 부족해요"

[cite_start]설문조사 결과, 응답자의 **71%**가 이미 이 가이드라인을 도입해 사용하고 있었습니다[cite: 24]. [cite_start]하지만 많은 연구자들이 가이드라인이 너무 포괄적이라서, 애매한 상황(불확실한 변이 등)을 판단할 때 더 **구체적인 세부 규칙(Granularity)**이 필요하다고 답했습니다[cite: 184].

---

### 5. 고찰: 왜 결과가 엇갈렸을까요?

연구팀은 전문가들 사이에서도 의견이 갈린 이유를 몇 가지로 분석했습니다.

1.  [cite_start]**익숙함의 차이:** 자주 보는 암이나 유명한 유전자는 잘 맞추지만, 소아암이나 희귀한 혈액암 관련 유전자는 전문가라 하더라도 해석의 난이도가 높았습니다[cite: 286].

2.  [cite_start]**증거 해석의 혼동:** 어떤 변이가 '치료제 선택'에 중요한지, 아니면 단순히 '예후(경과) 예측'에 중요한지를 헷갈려 하는 경우가 많았습니다[cite: 251].

3.  **데이터베이스 활용:** 최신 논문이나 전문 데이터베이스를 얼마나 잘 검색하고 활용하느냐에 따라 결과가 달라졌습니다. [cite_start]가이드라인에 명시된 필수 자료를 본 사람은 정답을 맞힐 확률이 훨씬 높았습니다[cite: 301].

### 6. 연구의 의의와 시사점

이 연구는 단순히 "점수가 낮다"고 비판하기 위한 것이 아닙니다. [cite_start]오히려 **"현재의 가이드라인이 훌륭한 출발점이지만, 완벽하지는 않다"**는 것을 증명했습니다[cite: 25].

* [cite_start]**표준화의 진전:** 70% 이상의 실험실이 공통된 언어(가이드라인)를 쓰기 시작했다는 것은 큰 발전입니다[cite: 394].

* [cite_start]**개선 방향 제시:** 이 연구 덕분에 앞으로 개정될 가이드라인은 더 세밀한 분류 기준과 교육 프로그램을 포함해야 한다는 확실한 목표가 생겼습니다[cite: 402].

---

### 💡 이 연구가 왜 중요한가요? (결론)

여러분이 혹은 가족이 암 진단을 받고 유전자 검사를 했다고 가정해 봅시다.

이 연구는 **"어느 병원에 가더라도, 어떤 의사가 분석하더라도, 내 유전자 검사 결과가 똑같이 정확하게 해석되어야 한다"**는 목표를 향해 가는 중요한 과정입니다.

암 유전자 해석이 표준화되어야 환자는 자신의 유전자 변이에 딱 맞는 **최적의 치료제**를 놓치지 않고 처방받을 수 있고, 불필요한 치료로 인한 고통과 비용을 줄일 수 있습니다. [cite_start]연구진들은 이번 결과를 바탕으로 가이드라인을 업데이트하여, 더 정확한 '암 정밀 의료' 시대를 열어가겠다고 약속했습니다[cite: 399].

우리가 모르는 사이, 실험실에서는 환자 한 명 한 명의 정확한 진단을 위해 이렇게 치열한 '채점'과 '오답 노트' 작성이 이루어지고 있습니다.


chatGPT

아래는 **업로드한 논문 전체 내용을 기반으로**,

비전문가도 이해하기 쉽도록 **연구 배경–목적–방법–결과–고찰–의의 및 시사점**을 정리한 **블로그용 요약본**입니다.

(A4 두 장 이내 분량에 맞춰 간결하지만 핵심은 빠짐없이 담았습니다.)

---

# 🧬 암 유전자 검사, 병원마다 결과가 다를까?

### ― 2017년 AMP/ASCO/CAP 변이 해석 가이드라인의 실제 활용을 점검한 연구 요약

---

## 1. 연구 배경

암 치료는 환자의 유전자 변이를 분석하는 **NGS(차세대염기서열분석)** 기술의 발전으로 빠르게 정밀화되고 있습니다.

예를 들어 특정 유전자에 변이가 있으면 **특정 항암제가 듣는지, 암이 얼마나 공격적인지, 어떤 진단 그룹에 해당하는지**를 판단할 수 있습니다.

하지만 각 병원·각 검사실마다

* 어떤 근거를 우선시하는지

* 어떤 변이를 중요하다고 판단하는지

* 보고서에 어떻게 정리하는지

가 제각각이라면, 같은 환자라도 병원마다 **다른 해석**을 받을 수 있게 됩니다.

이를 해결하기 위해 2017년 미국 3대 기관(AMP/ASCO/CAP)이 함께 **암 유전자 변이 해석 가이드라인**을 만들었고, 암 변이를

* **강력히 임상적으로 의미 있는 변이 (Tier I)**

* **잠재적으로 의미 있는 변이 (Tier II)**

* **의미가 불확실한 변이 (Tier III)**

* **양성·가능성 높은 양성 변이 (Tier IV)**

로 나누는 기준을 제시했습니다.

그런데… 이 가이드라인이 실제 현장에서 **얼마나 잘 적용되고 있을까?**

병원마다 분류가 얼마나 일치할까?

이 논문은 그 질문에 답하기 위해 수행된 연구입니다.

---

## 2. 연구 목적

연구진은 크게 두 가지 질문에 답하고자 했습니다.

### ① 2017년 가이드라인이 실제 검사실에서 얼마나 채택되고 있는가?

### ② 같은 변이를 제시했을 때, 여러 검사실이 **같은 결과(같은 Tier)** 를 내리는가?

이를 위해

* **전 세계 134명의 검사 전문가가 참여한 변이 해석 챌린지(=실전 테스트)**

* **220곳 이상의 검사실을 대상으로 한 실태조사(=설문)**

를 실시했습니다.

---

## 3. 연구 방법

### 🔍 **1) 변이 해석 챌린지(VITAL Challenge)**

연구진은 실제 암 환자 사례 4건(폐암·뇌종양·골수이형성증후군·대장암)에서 총 11개의 변이를 제시했습니다.

참가자들은 각 변이에 대해

* **진단적 의미(D)**

* **예후적 의미(P)**

* **치료적 의미(T)**

* 그리고 **Tier (I~IV)**

를 가이드라인에 따라 스스로 분류하도록 했습니다.

---

### 📝 **2) 가이드라인 사용 실태 설문조사**

220명의 검사 전문가에게

* 가이드라인을 알고 있는지

* 적용하고 있는지

* 어떤 점이 어렵고 수정이 필요한지

를 물었습니다.

---

## 4. 주요 결과

### ✔ 1) 변이 분류 결과의 일치도

총 362개의 응답을 분석한 결과:

* **정확히 의도한 Tier와 의미까지 모두 일치한 경우: 59%**

* **Tier만 비교했을 때 일치율: 65%**

* **Tier I+II(의미 있는 변이)로만 묶어 판단한 경우: 86% 일치**

➡ **결론: "중요한 변이인지 아닌지"는 대부분 정확하게 판단했지만,

세부 Tier 및 진단/예후/치료 분류에서는 여전히 불일치가 존재했다.**

### ✔ 2) 변이에 따라 오차가 크게 달랐다

* 널리 알려진 변이(NRAS, TP53 등)는 **일치율이 매우 높음**

* 드문 변이거나, 근거가 제한적인 변이는 **해석 차이가 큼**

* 특히 진단/예후를 평가할 때 **근거 레벨(A/B vs C/D)을 구분하는 부분에서 혼란이 많음**

### ✔ 3) 가이드라인 사용 실태

220명 중:

* **71%가 가이드라인을 사용 중**

* 이 중 절반은 “기관 맞춤형”으로 수정해 사용

* 가이드라인을 그대로 보고 구조에 반영한 기관은 48%

* 전체의 44%는 “사용은 하지만 난이도가 높다”라고 답함

### ✔ 4) 개선이 필요한 부분

응답자들이 공통적으로 요구한 개선사항은:

* **Tier 사이의 경계가 모호하다 → 더 세분화된 기준 필요**

* **VUS(불확실 변이) 해석 가이드가 부족하다**

* **진단·예후·치료적 근거(A~D 레벨) 판별이 어렵다**

* **국제적으로 동일하게 적용하기 어렵다**

---

## 5. 고찰(Discussion): 무엇이 문제일까?

연구진은 다음과 같은 특징을 발견했습니다.

### ● 1) 가이드라인 채택은 빠르게 증가하지만 “해석의 균일화”는 미완성

검사실들은 가이드라인을 참고하고 있으나

* 경험

* 사용하는 데이터베이스

* 변이에 대한 배경 지식

* 특정 암에 대한 전문성

에 따라 **해석이 다르게 나타나는 현상**이 있었다.

### ● 2) 특히 진단적/예후적 의미는 근거의 해석 범위가 넓어 차이가 컸다

예를 들어 **U2AF1, EZH2** 등의 변이는

임상 가이드라인(NCCN)을 참고하면 명확히 의미 있는 변이지만,

이를 모르고 해석하면 Tier II로 분류할 가능성이 높았다.

### ● 3) VUS(불확실 변이)는 가장 큰 혼란을 일으킨 그룹

어떤 근거를 적용하는지에 따라

Tier III ↔ Tier II 사이가 쉽게 오락가락했다.

### ● 4) 결국 “근거 레벨(A~D)” 자체가 명확하지 않은 것이 근본 원인

많은 전문가가

“A/B/C/D 근거의 기준을 더 명확히 숫자로 정량화 해 달라”고 요청했다.

---

## 6. 이 연구의 의의와 시사점

### 🌟 1) 암 유전자 변이 해석의 **표준화 필요성**을 실제 데이터로 보여줌

서로 다른 검사실이 같은 유전자 변이에 대해 **다른 Tier를 매긴다**는 사실은

환자 치료의 일관성에 직접 영향을 준다.

### 🌟 2) 가이드라인이 널리 사용되고 있지만 **개선이 시급한 부분이 명확히 드러남**

* 모호한 기준

* 기관별 변형된 적용

* 정보 접근성의 차이

이 실제 변이 해석에 영향을 주고 있음이 확인되었다.

### 🌟 3) 차세대 NGS 시대에 맞는 더 정교한 분류 체계의 필요성 제시

연구진은 다음과 같은 방향으로 업데이트가 필요하다고 강조한다.

* 더 **세분화된 Tier 기준**

* **정량적(점수 기반) 해석 시스템**

* 임상 근거(A/B/C/D) 정의의 명확화

* 국제적으로 통용되는 해석 체계 확립

### 🌟 4) “정밀의료”의 기반은 결국 **정확하고 일관된 유전자 해석**임을 강조

이 연구는 단순한 설문이나 의견이 아니라

실제 변이 해석 사례를 통해

**현재 문제점이 어디에 있는지 구체적으로 드러낸 점**에서 매우 의미가 크다.

---

## 🔍 마지막으로: 이 연구가 왜 중요한가?

* 앞으로 암 치료는 더욱 **유전자 중심**, **환자 맞춤형**으로 발전합니다.

* 같은 변이를 어떤 검사실은 “치료에 매우 중요하다(Tier I)”라고 보고,

  다른 곳은 “의미가 불확실하다(Tier III)”라고 한다면

  **환자의 치료 방향 자체가 달라질 수 있습니다.**

이 연구는

“지금 우리가 사용하는 변이 해석 기준이 얼마나 일관적으로 적용되고 있는가?”

라는 중요한 질문에 **현실적인 답**을 제공합니다.

그리고 이는 곧

**전 세계적으로 통일된 암 유전자 변이 해석 표준**을 만들어야 한다는 필요성을 분명하게 보여줍니다.


grok

### 암 유전자 변이 해석, 아직도 사람마다 다르게 본다?  

– 2017년 국제 가이드라인, 실제로 잘 쓰이고 있을까?

암 치료의 핵심이 된 NGS(차세대염기서열분석) 검사를 하면 한 환자에서 수십~수백 개의 유전자 변이가 쏟아져 나온다.  

그중 어떤 변이가 “치료제 바꿔야 할 만큼 중요하고”, 어떤 변이는 “그냥 무시해도 되는” 변이인지 판단하는 기준이 바로 2017년 AMP/ASCO/CAP이 만든 “암 체세포 변이 분류 가이드라인”이다.

이 가이드라인은 변이를 Tier I(강한 임상적 근거) → Tier II(잠재적 근거) → Tier III(미지) → Tier IV(양성)으로 보이는)으로 4단계로 나누고, 각각 치료(T), 진단(D), 예후(P) 의미를 붙인다.

그런데 2020~2021년에 실제 전 세계 실험실들이 이 기준을 얼마나 똑같이 적용하는지, AMP(미국분자병리학회)에서 직접 테스트해봤다.

방법은 두 가지였다.

1. 134명에게 실제 환자 4명의 NGS 결과(총 11개 변이)를 주고 “너라면 어떻게 분류할래?”라고 물어봤다.  

2. 220개별 설문으로 “가이드라인 쓰고 있냐, 안 쓰고 있냐, 쓰면서 불편한 점은 뭐냐” 물어봤다 (220명 응답).

결과가 충격적이었다.

① 11개 변이 중 전문가들이 미리 합의한 “정답”과  

   → Tier와 T/D/P까지 완전히 일치한 답변은 겨우 59%  

   → Tier만 맞춘 것도 65%  

   → “임상적으로 의미 있는 변이(Tier I+II)” vs “나머지”로만 나눠도 86% 일치

즉, 같은 변이를 봐도 10명 중 4명은 다른 결론을 내린다는 뜻이다.

특히 어려웠던 변이들

- PTCH1 스플라이스 변이 (메둘로블라스토마) → 39%만 정답  

- PHF6 missense 변이 (골수이형성증후군) → 54%만 정답  

- PIK3CA Ile391Met (대장암) → 양성으로 봐야 하는데 Tier II로 잘못 올린 사람이 많음

설문 결과는 더 충격적

- 71%가 “가이드라인을 쓰고 있다”고 답했지만  

- 그중 절반 가까이는 자신들 멋대로 수정해서 쓴다고 함  

- “너무 모호하다”, “혈액암에는 맞지 않다”, “Tier I과 II 구분이 애매하다”가 가장 많은 불만

결론적으로 말하면  

2017 가이드라인은 분명 많이 퍼졌고(70% 이상 사용), 대체로 방향은 맞지만  

아직도 “같은 변이를 보고도 다른 처방을 내릴 수 있을 만큼” 해석 차이가 크다.

그래서 저자들은 이렇게 말했다.  

“더 세분화된(several granular) 분류 체계가 필요하고,  

의사와 검사실 전문가 모두를 위한 교육 자료가 절실하다.”

이 연구가 왜 중요한가?

지금 이 순간에도 수많은 암 환자들이 “이 변이가 있으니 이 표적치료제를 써야 한다”는 보고서를 받고 약을 바꾼다.  

그 보고서가 검사실마다, 사람마다 달라진다면?  

환자는 잘못된 약을 먹거나, 먹을 수 있는 약을 놓칠 수 있다.

이 논문은 바로 그 “숨겨진 오차”를 숫자로 증명한 최초의 대규모 연구다.  

2023년 현재 ESMO, NCCN, FDA 등 모두 새로운 가이드라인 개정 작업에 들어갔는데,  

이 논문의 데이터가 핵심 근거 자료로 쓰이고 있다.

결국 암 정밀의학의 마지막 퍼즐인 “모두가 같은 언어로 말하게 만들기”의  

현 주소를 가장 솔직하게 보여준 연구라고 할 수 있다.


NotebookLM

이 논문은 **"분자 종양학에서 체세포 유전자 변이 분류의 표준화"**에 관한 것입니다. 특히 임상 실험실들이 암 유전자 변이 보고에 사용하는 핵심 지침인 **AMP/ASCO/CAP 표준 및 지침**의 실제 적용 현황, 발생하는 불일치 및 장벽을 평가한 대규모 연구 보고서입니다.

---

## 블로그 포스팅: 암 유전자 해석, 실험실마다 다르면 안 됩니다: AMP/ASCO/CAP 표준화 지침 평가 보고서

### 1. 연구 배경: 암 유전자 분석의 증가와 표준화의 필요성

최근 NGS(차세대 시퀀싱) 기술이 발전하고 비용이 낮아지면서, 고형암 및 혈액암의 **분자 프로파일링**이 일상적인 임상 관행으로 자리 잡았습니다. 암 환자에게서 발견되는 체세포(acquired somatic) 및 생식계열(germline) 유전자 변이는 환자의 진단, 예후, 그리고 치료제 선택에 중요한 정보를 제공합니다.

문제는 이러한 복잡한 유전체 결과를 헬스케어 제공자 간에 명확하게 이해하고 적절한 환자 치료로 이어지게 하기 위해서는 **실험실 내외부에서 통일된 표준화된 보고 방식**이 필수적이라는 것입니다. 실제로 2014년과 2017년 연구에 따르면, 많은 의료 전문가들이 유전체학 지식을 해석하고 이를 기반으로 치료를 결정하는 데 있어 자신감이 부족하다는 점이 확인되었습니다.

이에 따라 2017년, **AMP(분자병리학회), ASCO(미국임상종양학회), CAP(미국병리학회)가 공동으로 '암 유전자 변이 해석 및 보고를 위한 표준 및 지침(AMP/ASCO/CAP Somatic Variants Guideline)'**을 개발했습니다. 이 지침은 변이의 임상적 중요성을 **티어(Tier) 시스템**(Tier I: 강한 임상적 중요성, Tier IV: 양성/양성 가능성)으로 정의하고, 이를 진단적(D), 예후적(P), 치료적(T) 증거 세 가지 카테고리로 분류하는 틀을 제시했습니다.

### 2. 연구 목적: 표준화 지침의 실제 작동 방식 평가 및 개선점 도출

이 연구는 AMP VITAL(Variant Interpretation Testing Across Laboratories) 체세포 워킹 그룹이 수행했습니다.

주요 목표는 다음과 같습니다:

1.  **지침의 구현 및 활용 정도**를 이해하고.

2.  **실험실 간 티어 분류 시스템 적용의 일치도**를 평가하며.

3.  **실험실 간 변이 분류 불일치를 초래하는 지침 내 영역**을 식별하는 것입니다.

궁극적으로 이 연구 결과는 향후 체세포 변이 분류 지침 개정 작업에 반영되어 전 세계적으로 체세포 변이 해석의 표준화와 일관성을 달성하는 데 사용될 것입니다.

### 3. 연구 방법: 챌린지와 설문조사의 결합

연구진은 두 가지 상호 관련된 방식으로 데이터를 수집하고 평가했습니다.

#### A. VITAL 체세포 챌린지 (Variant Classification Challenges)

*   **참가자:** 총 134명의 참가자가 등록했으며, 대부분 학술 임상 실험실 소속의 임상 실험실 이사 또는 변이 분석가였습니다.

*   **평가 대상:** 4개의 임상 사례(고형암 및 혈액암 포함)에 걸친 총 11개의 유전자 변이. 이 변이들은 티어 I부터 티어 IV까지 광범위한 임상적 중요성을 포괄했습니다.

*   **평가 방식:** 워킹 그룹의 전문가 합의를 통해 각 변이에 대한 '의도된 분류(Intended Classification)'를 결정하고, 참가자 응답과 비교했습니다.

*   **일치도 분석:** 세 가지 방법이 사용되었습니다. 특히 **방법 3**은 임상적으로 중요한 변이(티어 I 및 티어 II)를 하나의 그룹으로 묶어 참가자가 임상적 중요성을 정확히 식별했는지 여부를 평가했습니다.

#### B. 지침 구현 설문조사 (Implementation Survey)

*   총 220명의 응답자를 대상으로, 지침의 채택 여부, 구현 장벽, 그리고 개선이 필요한 사항에 대해 설문조사를 실시했습니다.

### 4. 연구 결과: 높은 채택률과 낮은 세부 일치도

#### A. 지침 채택 및 활용

*   설문 응답자의 **71% (157/220)**가 이미 AMP/ASCO/CAP 지침을 변이 분류에 구현했거나 수정하여 사용하고 있었습니다.

*   이러한 채택률은 다른 보고서보다 높은 수치로, 지침이 실험실 간의 표준화를 시작했음을 보여줍니다.

#### B. 변이 분류 일치도

*   총 362건의 변이 분류 응답 중:

    *   **티어와 임상적 중요성 카테고리(D/P/T) 모두 일치(방법 1): 59%**에 불과했습니다.

    *   하지만, **임상적으로 중요한 변이(티어 I/II)만 그룹으로 묶어 분류했을 때(방법 3): 86%**의 높은 일치도를 보였습니다. 이는 대다수의 참가자가 변이의 임상적 중요성 유무는 올바르게 구별할 수 있음을 의미합니다.

*   **변이별 차이:** 일치도는 변이 자체의 특성에 따라 크게 달랐습니다.

    *   **일치도가 높았던 변이 (80% 이상):** **NRAS p.Gln61His (Tier I, 치료적 중요성)**와 같이 임상 증거가 잘 확립된 '핫스팟 변이'였습니다.

    *   **일치도가 낮았던 변이 (54%):** **PHF6 p.Arg274Gln (Tier III, 불확실)**와 같이 임상 증거가 제한적이거나 새로 등장하는 증거를 가진 희귀 변이였습니다.

#### C. 구현 장벽 및 개선 요구 사항

*   지침을 구현한 응답자의 **73%**는 지침에 만족하거나 어느 정도 만족했습니다.

*   그러나 지침 구현을 방해하는 주요 장벽으로 응답자들은 다음을 꼽았습니다:

    *   **소프트웨어 시스템 한계 (40%):** 독점 또는 상용 소프트웨어 시스템의 문제로 티어 분류 시스템으로 전환이 어려움.

    *   **기존 데이터베이스 변환의 어려움 (29%):** 기존 데이터를 새로운 티어 시스템에 맞추는 데 발생하는 문제.

*   가장 시급한 개선 요구 사항은 다음과 같습니다:

    *   **VUS(임상적 중요성 불확실 변이) 분류에 대한 더 명확한 지침 (55%)**.

    *   **특정 변이 유형(생식계열 변이, 구조적 변이 등) 분류 지침 명확화 (50%)**.

    *   **티어 내에서 더 세분화된(granular) 정의 제공 (45%)**.

### 5. 고찰 및 의의와 시사점: 정밀 의료를 위한 표준화의 완성

이 연구는 AMP/ASCO/CAP 지침이 실험실 간의 **체세포 변이 분류 표준화라는 대화와 노력**을 시작하는 데 성공했음을 분명히 보여줍니다. 그러나 세부적인 수준에서 상당한 불일치가 발생하고 있으며, 이는 지침의 **세분성(granularity) 부족**과 일부 내용의 모호성을 시사합니다.

이 연구는 임상 변이 해석 과정에서 다음과 같은 중요한 시사점을 남깁니다.

1.  **교육의 중요성:** 참가자들이 증거 수준(Level A/B vs C/D)과 티어 분류 간의 관계에 대해 혼란을 겪는 경향이 확인되었는데, 이는 임상 실험실 전문가와 종양 전문의를 위한 **추가 교육 프로그램**이 필요함을 강조합니다.

2.  **기술적 통합의 필요성:** 소프트웨어 및 데이터베이스 전환의 어려움이 지침 구현의 주요 장벽으로 지적된 만큼, 새로운 지침은 기술 시스템에 쉽게 통합될 수 있도록 설계되어야 합니다.

3.  **복잡한 변이 해결:** 이 연구는 생식계열 변이 또는 희귀 변이에 대한 해석이 여전히 가장 어렵다는 것을 입증했으며, 향후 지침은 이러한 복잡한 영역에 대해 더 상세하고 객관적인 기준을 제시해야 합니다.

---

**이 연구가 중요한 이유:**

암 분자 프로파일링이 환자 관리의 표준이 된 오늘날, 이 연구는 **AMP/ASCO/CAP 지침이 일관되고 신뢰할 수 있는 방식으로 적용되고 있는지**를 대규모로 검증한 중요한 작업입니다. 일치도 결과가 완벽하지 않더라도, **86%의 참가자가 임상적으로 중요한 변이를 정확히 식별**할 수 있다는 사실은 지침의 기본 틀이 작동하고 있음을 증명합니다.

궁극적으로 이 연구는 현장 전문가들의 직접적인 피드백과 정량적 데이터를 수집하여, **암 유전자 변이 해석의 일관성을 저해하는 현실적인 문제점들**을 명확히 식혔습니다. 이 피드백을 바탕으로 지침이 개정됨으로써 (2022년에 업데이트가 진행됨), 복잡한 NGS 결과가 임상 동료들에게 더 명확하고 일관성 있게 전달되어 **환자 개개인에게 가장 적절하고 효과적인 암 치료 및 관리를 촉진**하는 데 결정적인 역할을 할 것입니다.


Perplexity.ai

아래는 첨부 논문 "Assessments of Somatic Variant Classification Using the Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists Guidelines"의 내용을 블로그용으로 쉽게 요약한 글입니다.

***

### 연구 배경

최근 암 환자 진단과 치료에 유전자 분석(차세대 염기서열 분석, NGS)이 널리 쓰이며, 암 조직에 생긴 유전 변이(체세포 변이)를 정확히 분류하고 해석하는 일이 매우 중요해졌습니다. 2017년, 미국 주요 전문가 단체들은 체세포 변이 해석과 보고를 체계화하기 위한 공식 가이드라인(AMP/ASCO/CAP 가이드라인)을 만들었습니다. 그러나 실제 다양한 검사실에서 이 가이드라인을 적용할 때 해석이 일치하지 않을 수 있다는 문제가 제기됐습니다.[1]

### 연구 목적

연구진은 2017년 가이드라인이 실제 현장에서 얼마나 잘 활용되고 있는지, 검사실 간 해석 결과가 얼마나 일치하는지, 그리고 적용·확산을 위한 개선점은 무엇인지 알아보고자 했습니다.[1]

### 연구 방법

미국 및 여러 나라의 검사 전문가들 134명이 참여하여, 실제 암 환자 케이스 4건(총 11개 변이)에 대해 각자 변이 분류를 했습니다. 변이별로 치료, 진단, 예후 등 임상적 의미에 따라 등급을 매겼고, 전문가 그룹의 최종 답과 일치하는지 Concordance Rate(일치율)을 확인했습니다. 동시에, 가이드라인 현장 적용에 관한 설문조사도 실시했습니다.[1]

### 주요 결과

- 86%의 응답자가 임상적으로 중요한 변이(강한 임상적 의미, 잠재적 의미)를 정확히 분간할 수 있었습니다.

- 하지만 변이 등급(1~4단계)과 임상적 의미(치료/진단/예후)까지 정확히 일치한 경우는 59%로, 해석 차이가 적지 않았습니다.

- 특히 흔치 않거나 임상 증거가 적은 변이는 해석이 크게 엇갈렸습니다.

- 실제 임상 검사실의 71%가 이 가이드라인을 도입했으며, 그중 약 절반은 수정 후 적용했습니다.

- 많은 참여자가 "더 세분화된 분류 기준"과 "불확실 변이 해석에 대한 명확한 가이드", "실무자 교육"의 필요성을 제기했습니다.[1]

### 고찰

연구 결과는 변이 해석의 기본 틀(가이드라인)이 널리 도입되고 있지만, 현실에서는 해석 일치율이 불충분하다는 점을 보여 줍니다. 특히 증거가 적거나 드문 변이, 또는 약간의 임상적 맥락이 달라지면 분류가 크게 달라질 수 있습니다. 해석자가 임상 지침, 공공 데이터베이스, 최신 문헌 등 다양한 자료를 얼마나 충분히 활용하는지도 해석 일치에 큰 영향을 끼쳤습니다.[1]

또 많은 검사실이 소프트웨어 한계나 기존 데이터베이스 문제, 세부 기준 부족 등으로 도입에 어려움을 겪고 있었습니다. 향후엔 모든 변이에 대해 더 세분화된 분류, 불확실 변이에 대한 명확한 해석 지침, 실제 상황에 맞는 교육 프로그램이 준비되어야 함을 시사합니다.[1]

### 의의와 시사점

- 이 연구는 세계적으로 통용되는 암 유전자 변이 해석 기준의 현장 적합성과 한계를 구체적으로 평가한 첫 대규모 조사입니다.

- 암 환자 맞춤 치료의 시대에, 변이 해석의 표준화와 검사실 간 일관성을 높이려면 전문가 가이드라인의 꾸준한 개선, 세부 기준 마련, 교육 강화가 꼭 필요함을 알렸습니다.[1]

- 암유전체 분석 결과가 환자 진단과 치료에 침착하게 쓰이려면, 앞으로도 가이드라인 보완과 전문인력 교육이 계속되어야 합니다.

### 이 연구가 중요한 이유

암 치료 현장에서 정확한 유전자 변이 해석은 환자별 최적 치료법 선정에 결정적입니다. 이 연구는 실제 진료 환경에서 변이 분류의 표준화 현황과 한계를 집약적으로 보여 주었고, 더 나은 변이 해석 체계와 교육의 필요성을 세계적으로 재확인했습니다. 암 진단과 맞춤 치료 향상을 위한 필수 기반 자료로 의의가 큽니다.[1]


Kimi

**제목: 암 유전자 검사, 왜 같은 변이도 해석이 다를까? — 세계 134개 실험실이 함께 푼 문제**

---

### 🔍 연구 배경:  

암 진단과 치료에서 **유전자 검사**는 이제 선택이 아닌 필수입니다. 하지만 문제는 **같은 유전자 변이도 실험실마다 해석이 다르다**는 점입니다. 어떤 실험실은 “치료에 도움되는 변이”라고 보고하고, 다른 곳은 “의미를 모르겠다”고 할 수 있습니다.  

이런 혼란을 줄이기 위해 2017년, 미국 병리학회(AMP), 임상종양학회(ASCO), 병리학협회(CAP)가 함께 **‘암 유전자 변이 해석 가이드라인’**을 만들었습니다. 하지만 **“과연 이 가이드라인이 전 세계 실험실에서 잘 쓰이고 있을까?”**라는 의문이 생겼습니다.

---

### 🎯 연구 목적:  

이 연구는 **전 세계 실험실이 2017년 가이드라인을 얼마나 잘 따르고 있는지**, **같은 변이를 보고도 해석이 다른 이유는 무엇인지**, **어떤 부분이 개선되어야 할지**를 알아보기 위해 시작되었습니다.

---

### 🧪 연구 방법:  

1. **VITAL Somatic Challenge**  

   - 전 세계 134명의 전문가가 참여한 ‘변이 해석 대회’를 열었습니다.  

   - 4가지 암 사례(폐암, 수모세포종, 백혈병, 대장암)에서 나온 **11개 유전자 변이**를 주고, 각자 해석하게 했습니다.  

   - 참가자들은 대부분 **학회 소속 임상병리의사 또는 유전자 분석가**였습니다.

2. **설문 조사**  

   - 220개 실험실을 대상으로 **“2017년 가이드라인을 쓰고 있는가?”**라는 설문을 진행했습니다.  

   - 어떤 부분이 어려운지, 어떤 도움이 필요한지도 물었습니다.

---

### 📊 연구 결과:  

#### ✅ 변이 해석 대회 결과  

- **86%**는 “이 변이가 치료나 진단에 도움이 되는가?”를 **대충 맞춤** (의미 있는 변이 vs 의미 없는 변이).  

- 하지만 **정확한 등급(티어)**와 **의미 분류(치료/진단/예후)**까지 맞춘 사람은 **59%**에 불과했습니다.  

- **가장 해석이 엇갈린 변이**:  

  - **PTCH1 유전자 변이**(수모세포종) → 39%만 정답  

  - **PHF6 유전자 변이**(골수이형성증후군) → 54%만 정답  

#### ✅ 설문 조사 결과  

- **71%**는 가이드라인을 **도입했지만**,  

  - **54%**는 **일부 수정**해서 쓰고 있음  

  - **25%**는 **도입이 어렵다**고 답함  

- **가장 어려운 점**:  

  - “의미를 모르는 변이(VUS)는 어떻게 분류하나?”  

  - “유전성 변이와 암 변이를 어떻게 구분하나?”  

  - “가이드라인이 너무模糊的(모호)하다”

---

### 🧐 고찰:  

- **잘 알려진 변이**(예: NRAS p.Gln61His)는 90% 이상이 맞췄지만,  

- **희귀하거나 새로운 변이**는 해석이 **확 달랐습니다**.  

- **자료의 접근성**도 문제였습니다.  

  - NCCN 가이드라인은 **회원가입**이 필요하고,  

  - WHO 종양 분류는 **유료**여서 많은 실험실이 쓰지 못했습니다.  

- **유전성 변이 판단**은 더 복잡했습니다.  

  - 변이의 **빈도(VAF)**만으로는 부족하고,  

  - **환자 나이**, **가족력**, **동반 유전자 변화**까지 봐야 하는데,  

  - 이를 **놓치는 경우가 많았습니다**.

---

### 📌 의의와 시사점:  

이 연구는 **“표준화되지 않은 유전자 검사는 환자에게 혼란을 줄 수 있다”**는 사실을 보여줍니다.  

- **같은 변이라도 해석이 다르면**, 치료 결정도 달라질 수 있습니다.  

- **가이드라인은 있지만, 현장에서 제대로 쓰이려면**:  

  - **더 쉽고 구체적인 기준**이 필요하고,  

  - **교육 자료**와 **무료 데이터베이스**가 확보돼야 합니다.  

  - **유전성 변이 판단 툴**도 함께 제공되어야 합니다.

---

### ✨ 왜 이 연구가 중요한가?  

이 연구는 **“유전자 검사의 해석도 표준화되어야 한다”**는 사실을 전 세계 실험실에 알린 **첫 번째 대규모 증거**입니다.  

암 환자에게 **정확한 유전자 정보**는 **생존과 직결**됩니다.  

이제는 **“검사를 했냐”**가 아니라 **“검사 결과를 누가, 어떻게 해석하느냐”**가 핵심입니다.  

이 연구는 **그 해석의 품질을 높이는 첫걸음**이었고, **2022년부터 가이드라인 개정 작업**이 시작되는 결정적 계기가 되었습니다.

---

> **한 줄 요약**:  

> “같은 유전자 변이도 해석이 다르다면, 환자의 생존이 달라질 수 있다” — 이 연구는 그 해석을 맞추기 위한 **세계 첫 시도**였습니다.




출처: @ye._.vely618


토요일, 3월 30, 2024

NGS를 사용할 때 필요한 그 가이드라인

오늘은 AMP(미국분자병리학회)와 CAP(미국병리학회)에서 공동으로 합의한 지침인 "Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists"을 네이버의 클로바와 gemini에게 각각 물어보았습니다.

doi는 10.1016/j.jmoldx.2017.01.011 입니다.


먼저 gemini입니다.

안녕하세요, 생명공학 전공자가 아닌 분들을 위한 블로그 글을 작성하고자 하시는군요.

제가 찾은 논문은 다음과 같은 내용을 다루고 있습니다.

* **연구 목적과 배경**

이 연구는 다음세대 염기서열 분석(NGS) 기반 종양 패널 검사의 분석적 검증을 위한 최선의 실천 지침을 확립하는 것이 목적이었습니다. 이 연구는 분자 병리학 협회(Association for Molecular Pathology)가 주관하고 미국 병리학회(College of American Pathologists)가 연계 대표를 맡은 작업 그룹이 수행했습니다.

* **연구 방법**

이 연구에서는 NGS 기반 종양 패널 검사의 분석적 검증을 위한 단계별 지침을 제시했습니다. 이러한 단계에는 패널 설계, 라이브러리 준비, 염기서열 분석 및 데이터 분석이 포함됩니다. 또한 참조 자료와 세포주를 사용하여 검사 성능을 평가하는 중요성을 강조했습니다.

* **결과**

이 연구에서는 NGS 기반 종양 패널 검사의 분석적 검증을 위한 다음과 같은 권장 사항을 제시했습니다.

* 오류 기반 접근 방식을 사용하여 잠재적인 오류의 원인을 식별합니다.

* 분석 프로세스 전반에 걸쳐 품질 관리를 사용하여 고품질 염기서열 분석 결과를 보장합니다.

* 참조 세포주와 참조 자료로 검사 성능을 평가합니다.

* 커버리지 깊이와 테스트 성능을 확립하기 위해 사용해야 하는 샘플의 최소 요구 사항을 설정합니다.

* **논의**

이 연구는 NGS 기반 종양 패널 검사의 분석적 검증을 위한 중요한 지침을 제공합니다. 이러한 지침은 검사의 정확성과 신뢰성을 보장하는 데 도움이 됩니다.



다음은 CLOVA X입니다.

NGS 기반 암 패널 테스트의 분석적 유효성 검증을 위한 지침

NGS(Next Generation Sequencing)는 차세대 염기서열 분석 기술로, 유전체 분석에 혁명을 일으키고 있습니다. NGS는 기존의 염기서열 분석 기술보다 빠르고 정확하며, 비용이 저렴하다는 장점이 있습니다. 이러한 이유로 NGS는 암 진단에 빠르게 적용되고 있습니다.

암 진단을 위해서는 암 세포에서 발견되는 유전자 변이를 파악해야 합니다. 이를 위해 NGS 패널을 사용합니다. NGS 패널은 암 세포에서 발견되는 유전자 변이를 탐지할 수 있는 유전자 패널입니다.

NGS 패널을 사용할 때는 분석적 유효성 검증을 해야 합니다. 분석적 유효성 검증은 NGS 패널이 정확하게 유전자 변이를 탐지할 수 있는 지를 검증하는 과정입니다.

이번 논문에서는 NGS 기반 암 패널 테스트의 분석적 유효성 검증을 위한 지침을 제공합니다. 이 지침은 표적 유전자 패널과 고형 종양 및 혈액 악성 종양의 진단 용도에 초점을 맞춥니다.

NGS 패널은 SNVs, indels, deletions, CNAs, SVs, gene fusions 등을 탐지할 수 있습니다. CNAs와 SNVs, indels를 탐지하기 위해 패널을 사용할 수 있는지 고려해야 합니다. SVs는 염색체 재배열을 포함합니다.

NGS 방법은 샘플 준비, 라이브러리 준비, 시퀀싱, 데이터 분석을 포함합니다. NGS 데이터 분석 파이프라인은 SNV 검출, indel containing sequence reads의 정렬, CNAs 식별, SVs detection 등의 작업으로 나뉩니다.

NGS 패널 콘텐츠는 hotspot panels에서 개인 codons에 초점을 맞춘 것부터 수백 개의 유전자의 코딩 영역을 포함하는 것까지 다양합니다. NGS 플랫폼 선정 시 고려해야 할 사항은 turnaround time, 샘플 테스트, sensitivity, 예상되는 테스트 양, 유전 변이의 유형과 복잡성, 생물정보학 지원, 인프라 등입니다.

NGS assay development process에서 error를 평가하는 방법은 pre analytical and analytical factors를 고려하는 것입니다. FFPE samples을 다룰 때는 nucleic acid yield가 문제가 될 수 있으므로 uracil Nglycolase로 treatment를 하는 것이 도움이 됩니다. 라이브러리 준비 시 도서관 방법에 사용된 증폭 오류와 내용 편향의 가능성을 염두에 두고 assay design을 통해 error의 잠재적 근원을 해결해야 합니다.

assay validation을 시작하기 전 optimization and familiarization (O&F) 과정이 필요합니다. optimization and familiarization (O&F) 과정은 NGS test를 통해 design expectations를 충족하는지 평가하는 과정입니다.

NGS 패널을 사용할 때는 분석적 유효성 검증을 해야 합니다. 분석적 유효성 검증은 NGS 패널이 정확하게 유전자 변이를 탐지할 수 있는 지를 검증하는 과정입니다. 이를 통해 NGS 패널의 신뢰성을 높일 수 있습니다.

통계적인 방법을 활용하여 분석적 유효성 검증을 수행합니다. 예를 들어, sensitivity, specificity, positive predictive value, negative predictive value 등의 지표를 사용하여 분석적 유효성 검증을 수행합니다.

NGS 패널을 사용할 때는 분석적 유효성 검증을 반드시 수행해야 합니다. 이를 통해 NGS 패널의 신뢰성을 높이고, 암 진단의 정확성을 높일 수 있습니다.


음.. CLOVA가 생각보다 글을 (블로그처럼 작성한다는... 형식적인 측면에서..) 잘 작성하는 것 같아 보이네요 

gemini는 요약하라고 하면 개조식으로 많이 작성하는 것 같더라구요.

여튼 CLOVA와 gemini를 적절히 잘 섞으면 괜찮은 내용이 나올듯하네요 :)




출처: @ye._.vely618