역시 세상에는 내마을을 알고 있는 분들이 있다는..
doi: https://doi.org/10.1186/s12864-022-08365-3
결론은 누가누가 변이를 잘 찾나 테스트 되겠습니다.
그래서 샘플 준비도 GIAB과 함께 non-GIAB 데이터도 준비하고, 정렬 프로그램도 BWA, BOWTIE, Isaac, Novoalign 다양하게, 변이 caller도 GATK, FreeBayes, Strelka이외에도 DeepVariant나 Clair3와 Octopus 등 다양한 변이 caller를 도입해서 테스트를 진행해 보았다고 합니다.
Clair3와 Octopus는 처음들어 봤네요 @.@ 역시 사람은 공부를 해야함
그리고 GIAB외에도 non-GIAB 데이터를 활용한것은 또 새로운 접근법인듯합니다. 아무래도 많은 연구가 이뤄진 데이터와 그러지 않은 데이터간의 차이가 있을 수 있고, 아직 T2T를 사용한 변이 탐지 벤치마킹 논문을 찾아보진 못했는데 이 또한 조만간 나오겠네요. 이미 나와 있을수도..
여튼 이것저것 따져 봤을 때 정렬 프로그램은 일단 Bowtie2는 성능이 저하되는 결과를 보여주기에 사용하면 안되는 방법이고, 변이 탐지에서는 DeepVariant가 좋은 성능을 보이는 결과를 얻을 수 있었다고 합니다.
그리고 GIAB와 non-GIAB 샘플을 비교해본 바 현재 사용하는 분석 방법이 GIAB에서만 좋은 결과를 보이고 non-GIAB에서는 그렇지 않다는 것, aka GIAB 샘플이나 non-GIAB 샘플이나 편견없이 잘 분석된니, 현재 분석 방법들을 활용해도 문제가 없다는 것을 확인하였다고 합니다.
그러나 아직 존재하는 몇 가지 문제점을 지적하기도 했습니다.
기계학습 방법을 사용하는 caller 같은 경우 모델에 따라 변이 탐지에 문제가 발생할 수 있기 때문에 조심해서 사용하여야 하고, 앞서 얘기했던 T2T 표준 유전체를 사용하였을 때 발생할 수 있는 기존 정렬 프로그램이나 변이 탐지 프로그램의 한계점이나 영향(부정적인)은 확인된바가 없기떄문에 검토가 필요하다는 점, GIAB이나 non-GIAB이던 일반적인 벤치마킹에 사용하고 있는 표준 샘플들의 사용 region에 대한 문제, 대게 잘 정의된 변이들은 유전자 영역에 분포하고 있기 때문에 비유전자 영역에 있는 변이 또는 시퀀싱이 잘 되지 않은 영역들에 대한 정보는 제한적일 수 있기에 이런 단점들이 보강된 표준 샘플들이 필요하는 점, NGS 데이터의 경우 지속적으로 개선되고 새로운 방법이나 도구들이 개발되고 있으나 민감도, 재현성과 같은 변이 탐지 성능 지표에 집중되어 있지 분석 시간이나 사용의 편의성, 프로그램 설치 난이도와 같은 비교적 중요하게 다루지 않는 항목들에 대해서도 관심이 필요하다는 것들에 대해서 언급을 해주었습니다.
간만에 최신 변이 탐지 벤치마킹 논문을 한번 읽어봤는데, 저는 유익한 시간이었는데 어떠셨나요?
이제 즐거운 주말을 보내러~ :)
ps. 근데 chatGPT한테 요약 해달라고 하니 왜 이 논문에서 Dama dama (사슴)을 왜 그리 찾는지... 처음에는 내가 url을 잘못 입력한줄 알았는데...
출처: @ye._.vely618 |
댓글 없음:
댓글 쓰기