레이블이 Drug-repositioning인 게시물을 표시합니다. 모든 게시물 표시
레이블이 Drug-repositioning인 게시물을 표시합니다. 모든 게시물 표시

월요일, 10월 14, 2024

기계학습 모델을 활용한 약물 재사용

오늘은 drug repurposing, drug repositioning에 대한 내용을 가져와 봤습니다. 제목은 A foundation model for clinician-centered drug repurposing 입니다.


DOI: 10.1038/s41591-024-03233-x


gemini

약물 재사용이란 이미 승인된 약물을 새로운 질병에 대해 사용하는 것을 의미합니다. 이는 기존 약물의 안전성과 효능에 대한 데이터를 활용하여 새로운 약물을 개발하는 비용과 시간을 줄일 수 있습니다.

이 문서에서 제시된 모델은 TxGNN입니다. TxGNN은 의료 지식 그래프(KG)를 사용하여 약물과 질병 간의 관계를 학습합니다. 그런 다음 이러한 관계를 기반으로 약물이 질병에 대한 치료제가 될 가능성을 예측합니다.

TxGNN은 기존의 기계 학습 모델에 비해 여러 가지 장점이 있습니다. 첫째, TxGNN은 의료 지식 그래프를 사용하여 약물과 질병 간의 복잡한 관계를 학습할 수 있습니다. 둘째, TxGNN은 제로 샷 예측이 가능합니다. 즉, TxGNN은 학습 중에 본 적이 없는 질병에 대해서도 약물을 예측할 수 있습니다. 셋째, TxGNN은 예측 결과를 해석할 수 있습니다. 즉, TxGNN은 약물이 질병에 대한 치료제가 될 가능성이 있는 이유를 설명할 수 있습니다.

TxGNN은 약물 재사용에 대한 잠재력이 높은 모델입니다. TxGNN은 기존 약물의 안전성과 효능에 대한 데이터를 활용하여 새로운 질병에 대한 치료제를 개발하는 데 도움을 줄 수 있습니다.

약물 재사용의 어려움

 약물 재사용은 매우 어려운 문제입니다. 약물은 매우 복잡한 시스템에서 작용하기 때문에, 약물이 어떤 질병에 효과가 있을지 예측하기가 어렵습니다. 또한, 약물은 부작용을 일으킬 수도 있습니다. 따라서 약물 재사용을 위해서는 안전성과 효능이 검증된 약물을 사용해야 합니다.

기계학습을 이용한 약물 재사용

 기계 학습은 약물 재사용을 위한 유망한 기술입니다. 기계 학습은 대량의 데이터를 분석하여 패턴을 찾아내는 데 뛰어납니다. 이 기술을 사용하면 약물과 질병 간의 복잡한 관계를 학습할 수 있습니다.

TxGNN 모델

 TxGNN은 의료 지식 그래프를 사용하여 약물 재사용을 예측합니다. 의료 지식 그래프는 약물, 질병, 단백질, 유전자 등에 대한 정보를 담고 있습니다. TxGNN은 이러한 정보를 사용하여 약물과 질병 간의 관계를 학습합니다.

TxGNN은 제로 샷 예측이 가능합니다. 이는 TxGNN이 학습 중에 본 적이 없는 질병에 대해서도 약물을 예측할 수 있다는 의미입니다. 이는 약물 재사용에 있어서 매우 중요한 특징입니다.

TxGNN은 예측 결과를 해석할 수 있습니다. 이는 TxGNN이 약물이 질병에 대한 치료제가 될 가능성이 있는 이유를 설명할 수 있다는 의미입니다. 이는 약물 재사용을 위해서 매우 중요한 특징입니다.

약물 재사용에 대한 기계 학습의 영향

기계 학습을 이용한 약물 재사용은 약물 개발의 비용과 시간을 줄일 수 있습니다. 또한, 기존 약물의 안전성과 효능에 대한 데이터를 활용할 수 있기 때문에, 새로운 약물의 안전성과 효능을 높일 수 있습니다.

약물 재사용은 향후에도 더욱 중요한 기술이 될 것입니다. 기계 학습의 발전으로 인해 더욱 정확한 약물 재사용 모델이 개발될 것입니다. 또한, 더욱 많은 데이터가 축적됨에 따라, 약물 재사용의 범위도 더욱 넓어질 것입니다.

약물 재사용은 인류의 건강과 복지에 크게 기여할 수 있는 기술입니다. 기계 학습을 이용한 약물 재사용의 발전으로 인해, 더 많은 사람들이 질병으로부터 벗어날 수 있게 됩니다.



clova-x

신약 개발은 많은 시간과 비용이 소요되는 과정입니다. 이에 대한 대안으로 기존에 허가받은 약물을 새로운 용도로 사용하는 약물 재창출(drug repurposing)이 최근 주목받고 있습니다. 약물 재창출은 이미 안전성과 유효성이 검증된 약물을 활용하기 때문에 임상시험 기간과 비용을 단축할 수 있고, 새로운 치료제가 없는 질환에 적용할 수 있다는 장점이 있습니다.

기계학습(AI) 기술을 활용하여 약물 재창출을 위한 후보 약물을 발굴하는 연구가 활발하게 이루어지고 있습니다. 대표적인 예로, 그래프 신경망(GNN)을 이용하여 약물과 질병 간의 관계를 학습하고 이를 바탕으로 약물의 용도를 예측하는 모델인 'TxGNN'이 개발되었습니다. 이 모델은 대규모의 의료 지식 그래프를 학습 데이터로 사용하여, 약물과 질병 간의 복잡한 상호작용을 모델링하고 이를 바탕으로 약물의 새로운 용도를 예측합니다.

'TxGNN' 모델은 기존의 약물 재창출 방법에 비해 높은 정확도와 예측 속도를 보여주며, 특히 기존에 치료제가 없는 질병에 대한 예측에서도 높은 정확도를 보였습니다. 이는 기계학습을 통해 기존의 데이터로부터 새로운 패턴을 발견하고 이를 활용하여 신약 개발에 소요되는 시간과 비용을 크게 줄일 수 있는 가능성을 보여줍니다.

또한, 기계학습 모델은 그 결과를 해석하기 어렵다는 단점이 있는데, 'TxGNN' 모델은 해석 가능성을 크게 향상시켜 약물과 질병 간의 관계를 이해하는 데 도움을 줍니다. 이는 의사나 연구자가 약물 재창출 과정에서 모델의 예측을 더욱 신뢰하고 활용할 수 있게 해줍니다.

약물 재창출과 기계학습의 결합은 신약 개발의 패러다임을 바꾸고, 의학 연구와 치료에 혁신을 가져올 것으로 기대됩니다. 기계학습을 통해 기존의 약물로부터 새로운 가치를 창출함으로써, 인류의 건강과 복지에 더욱 기여할 수 있을 것입니다.



chatGPT

이 연구는 **약물 재창출**에 관한 내용입니다. 약물 재창출이란, 원래 다른 질병 치료를 위해 승인된 약물을 새로운 질병 치료에 사용하는 방법입니다. 이를 통해 새로운 약물을 개발하는 데 드는 비용과 시간을 줄일 수 있으며, 이미 승인된 약물이기 때문에 안전성과 효능이 어느 정도 검증되어 있습니다. 그러나 지금까지는 이 방법이 우연이나 의사들의 경험에 의존하는 경우가 많았습니다. 따라서, 더 체계적이고 효율적인 방법이 필요했습니다.

### 연구 배경 및 목적

현재 전 세계적으로 약 7,000개의 희귀질환이 존재하지만, 그중 5-7%만이 승인된 치료법을 가지고 있습니다. 이러한 이유로 기존 약물을 새로운 질병에 활용할 수 있는 방법을 찾는 것이 매우 중요합니다. 이를 통해 치료법이 없는 질병의 치료 가능성을 높이고, 많은 사람들의 삶의 질을 개선할 수 있습니다. 이 연구는 **TxGNN**이라는 인공지능(AI) 기반의 **그래프 신경망** 모델을 개발하여, 특히 치료법이 없는 질병에 대한 약물 후보를 예측하고자 했습니다.

### 머신러닝을 통한 약물 재창출

이번 연구에서 사용된 **TxGNN** 모델은 수천 개의 질병과 약물, 그리고 그들 간의 관계를 하나의 **의료 지식 그래프(Knowledge Graph)**로 만들어 학습했습니다. 그래프 신경망(GNN)이라는 기술을 이용해 이 데이터의 복잡한 관계를 분석하고, 특정 약물이 새로운 질병에도 효과가 있을지 예측할 수 있었습니다. 이 과정에서 사용된 머신러닝 기술은, 기존에 치료법이 있는 질병을 통해 학습한 데이터를 바탕으로, 치료법이 없는 질병에 대한 예측도 가능하도록 했습니다. 이를 "제로샷 예측(zero-shot prediction)"이라고 부릅니다.

### 데이터 전처리

**의료 지식 그래프**는 수십 년간의 연구 데이터를 기반으로 구축되었습니다. 이 그래프에는 17,080개의 질병, 7,957개의 약물, 그리고 그들 간의 다양한 관계가 포함되어 있습니다. 예를 들어, 어떤 약물이 특정 단백질에 영향을 미치는지, 또는 그 단백질이 어떤 질병과 연관이 있는지를 그래프 형태로 표현했습니다. 이 데이터를 머신러닝 모델이 학습할 수 있도록 적절하게 전처리한 후, 모델이 질병과 약물 간의 관계를 파악할 수 있게 했습니다.

### 연구 결과 및 미래의 영향

TxGNN 모델을 통해, 기존의 8가지 방법보다 19% 높은 정확도로 질병에 적합한 약물을 예측할 수 있었습니다. 특히, 임상 실험이 부족한 희귀질환이나 복잡한 질병에서도 유의미한 결과를 도출했습니다. 이 모델은 의사들이 약물을 새롭게 처방할 때 참고할 수 있는 도구가 될 수 있으며, 실제로 과거에 의사들이 **오프라벨(off-label)**로 처방한 약물과도 일치하는 경우가 많았습니다.

### 미래의 영향

이 연구는 우리가 아직 잘 모르는 질병에 대해 새로운 치료법을 찾는 데 큰 기여를 할 수 있습니다. 앞으로는 더 많은 데이터가 축적되고, 이러한 AI 모델들이 발전하면서, 약물 재창출은 훨씬 더 빠르고 효율적으로 이루어질 것입니다. 이는 궁극적으로 새로운 약물 개발에 드는 시간과 비용을 절감하고, 많은 환자들에게 더 빠르게 치료 기회를 제공할 수 있게 할 것입니다.



NotebookLM

## 약물 재사용에 기계 학습을 사용하는 방법: TxGNN 모델 소개

###  연구 배경 및 목적

전 세계적으로 희귀 질환을 포함하여 치료법이 없는 질병이 많습니다. 새로운 약물을 개발하는 데는 막대한 비용과 시간이 소요되기 때문에 **기존 약물의 새로운 용도를 찾는 약물 재사용 (Drug Repurposing)**이 주목받고 있습니다. 하지만 현재까지 대부분의 약물 재사용은 의사의 처방이나 환자 경험을 통한 우연한 발견에 의존하고 있었습니다. 이러한 문제를 해결하기 위해 **인공지능(AI), 특히 기계 학습을 이용한 약물 재사용 기술 개발**이 활발히 이루어지고 있습니다. 

###  기계 학습의 활용 및 데이터 전처리

TxGNN은 **질병에 대한 제한적인 치료 옵션과 분자 데이터 문제를 해결하기 위해 개발된 그래프 기반 모델**입니다.  TxGNN은 방대한 생물 의학 지식 그래프(KG)를 기반으로 학습되어 질병과 약물의 관계를 예측합니다. 이때,  **질병과 약물은 그래프의 노드(node)로 표현되고, 이들 간의 관계는 엣지(edge)로 표현**됩니다.

#### 1. 지식 그래프 구축 및 데이터 전처리

TxGNN 모델 학습에 사용된 데이터는 **다양한 공개 데이터베이스에서 수집된 17,080개의 질병, 7,957개의 약물 및 이들 간의 관계 정보를 포함**합니다. 이러한 정보는 질병 메커니즘, 약물 작용 메커니즘, 유전자, 단백질, 생물학적 과정 등을 포괄적으로 포함하고 있습니다. 수집된 데이터는 **10가지 유형의 노드와 29가지 유형의 엣지를 가진 이질적인 KG**로 구축되었습니다.

#### 2. TxGNN 모델 학습 및 검증

TxGNN은 수집된 KG 데이터를 사용하여 **질병과 약물 간의 관계를 예측하도록 학습**되었습니다. 이 과정에서 **질병 유사성 기반 메트릭 학습 디코더**를 사용하여 분자적 특성이 부족한 질병에 대한 정보를 보완하고 예측 정확도를 향상시켰습니다. 또한, 모델의 일반화 능력을 평가하기 위해 **제로샷(Zero-shot) 약물 재사용 평가**를 수행했습니다. 이는 모델이 학습 중에 접하지 못했던 질병에 대해서도 효과적으로 약물을 예측할 수 있는지 확인하는 방법입니다.

#### 3. 다중 홉 해석 가능 경로 생성

TxGNN은 예측 결과에 대한 신뢰도를 높이기 위해 **예측 근거를 설명하는 다중 홉 해석 가능 경로(Multi-hop interpretable paths)를 생성**합니다. 이 경로는 질병과 약물 사이의 관계를 설명하는 일련의 생물학적 상호작용을 보여줍니다.

###  주요 결과 및 미래 영향

TxGNN은 기존의 기계 학습 모델보다 **제로샷 약물 재사용 작업에서 월등한 성능**을 보였습니다. 특히, 치료법이 없는 질병이나 정보가 제한된 질병에 대해서도 효과적인 약물을 예측했습니다. 또한, TxGNN이 예측한 약물 중 다수는 **실제 임상 현장에서 오프라벨(Off-label) 처방으로 사용되는 것으로 확인**되어 모델의 임상적 유용성을 뒷받침했습니다.

**TxGNN은 의학 연구 및 신약 개발에 상당한 영향을 미칠 것으로 예상됩니다.**

*   **신약 개발 비용 및 시간 단축:** TxGNN은 기존 약물의 새로운 용도를 빠르게 찾아내어 신약 개발에 소요되는 비용과 시간을 획기적으로 단축할 수 있습니다.

*   **희귀 질환 및 복잡한 질병 치료제 개발 촉진:** TxGNN은 정보가 제한된 질병에 대한 연구를 촉진하고 새로운 치료법 개발에 기여할 수 있습니다.

*   **개인 맞춤형 치료 가능성 제시:** 향후 환자 정보를 KG에 통합하면 개인 맞춤형 약물 재사용 예측을 제공할 수 있습니다.

###  결론

TxGNN은 **AI 기반 약물 재사용 기술의 발전 가능성을 보여주는 중요한 사례**입니다. TxGNN은 의학 지식을 체계적으로 활용하여 효과적인 약물 재사용을 가능하게 하고, 궁극적으로는 환자들에게 더 나은 치료 기회를 제공할 것으로 기대됩니다. 


일단 데이터가 쌓이면 이것저것 할 수 있는 것이 많습니다. 

기계학습을 AI로 볼 수 있나... 그렇긴하지만 모 기계의 힘을 빌리지 않고 할 수 있는 일이 없으니 그냥 넘어가는 것으로.. :)

사실 이제는 기존 약을 다른 질병에 재사용을 하는 것이 아닌 개개인의 병에 맞춰 약을 디자인하는 시대가 도래하지 않겠습니까?

조만간 오겠죠, 가격이 문제일뿐 ㅎㅎ 



출처: @wm_ohmygirl