오늘은 FDA 승인 과정에서 의료 인공지능의 평가방법과 한계에 대해서 언급한 논문을 가져와봤습니다. 제목은 How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals입니다.
DOI: 10.1038/s41591-021-01312-x
간단히 FDA 승인을 받은 의료 인공지능들의 경우 다양한 인구집단에서 성능을 보장 받기 위해서 Multi-Site 평가와 전향적인 연구가 필요하다는 내용 되겠습니다.
clova-x
Medical AI devices의 FDA 승인 과정에서의 평가 방법과 한계점이 분석되었습니다. 대부분의 AI 디바이스는 단일 사이트에서 평가되며, 다양한 인구집단에서의 성능을 보장하기 위해 다사이트 평가와 전향적 연구가 필요합니다.
1. **Medical AI Device Evaluation**
- FDA는 2015년부터 2020년까지 승인된 모든 의료 AI 디바이스를 데이터베이스로 구축하였습니다.
- 대부분의 디바이스는 과거 데이터를 기반으로 한 회고적 연구로 평가되었으며, 전향적 연구는 거의 이루어지지 않았습니다.
2. **평가의 한계점**
- 대다수의 디바이스는 소수의 사이트에서만 평가되었으며, 이는 지리적 다양성을 제한합니다.
- 샘플 크기와 인구집단별 성능 평가가 충분히 이루어지지 않았으며, 이는 알고리즘의 신뢰성 판단에 어려움을 줍니다.
3. **다사이트 평가의 중요성**
- 다사이트 평가는 알고리즘의 편향과 신뢰성을 이해하는 데 필수적이며, 다양한 장비와 인구집단에서의 성능을 보장합니다.
- 전향적 연구와 표준 치료와의 비교는 해로운 과적합을 줄이고 실제 임상 결과를 더 정확히 포착합니다.
4. **Recommendations**
- AI 디바이스의 성능을 다양한 임상 사이트에서 평가하여 대표적인 인구집단에서의 성능을 보장해야 합니다.
- 시장 출시 후 감시를 통해 의도치 않은 결과와 편향을 이해하고 측정해야 합니다.
chatGPT
물론입니다! 아래는 사용하신 논문 *"How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals"* 을 기반으로 한 블로그 스타일의 쉬운 요약입니다. 비전공자도 이해할 수 있도록 최대한 친절하게 설명드릴게요.
---
# 🧠 의료 인공지능(AI), 과연 믿고 써도 될까?
**미국 FDA 승인 의료 AI 기기 분석으로 본 현재와 과제**
## 📌 연구 배경 – 왜 이 연구가 필요했을까?
요즘 병원에서는 인공지능(AI)을 활용한 진단 기술이 점점 많아지고 있어요. AI가 의사의 눈을 대신해 엑스레이를 보고 질병을 찾아내는 일도 가능해졌죠. 그런데 이런 AI 기술들이 실제 환자에게 사용되기 전에 얼마나 철저하게 검증되고 있는지, 알고 계신가요?
이 연구는 바로 그런 물음에서 시작됐습니다.
**“FDA가 승인한 의료 AI 기기들은 얼마나 신뢰할 수 있을까?”**
이 질문에 대한 답을 찾기 위해, 연구진은 실제로 미국 FDA 승인을 받은 AI 기기들을 하나하나 분석했습니다.
---
## 🔍 연구 목적 – 연구진이 알고자 했던 것은?
연구진은 다음과 같은 점들을 확인하고 싶어 했어요:
- 의료 AI 기기들이 **어떻게 평가**되고 있는가?
- **테스트에 사용된 데이터는 다양**한가? (여러 병원, 다양한 환자)
- 평가할 때 **실제 임상 환경을 반영**했는가?
- AI 성능이 **특정 인종이나 성별에 치우치진 않았는가?**
이런 것들을 통해, **현재 의료 AI 평가에 어떤 한계가 있는지 파악**하고, 더 나은 평가 방식에 대한 제안도 하려 했습니다.
---
## 🧪 사용된 데이터 – 뭘 가지고 분석했을까?
연구진은 2015년부터 2020년까지 FDA에서 승인한 **의료용 AI 기기 130개**를 수집했어요. 각 기기의 설명서에서 다음과 같은 정보를 뽑아냈죠:
- 평가에 사용된 **환자 수**
- 참여한 **병원 수**
- 평가 방식이 **과거 기록 기반(회고적)**인지, 아니면 **실제 사용 환경 기반(전향적)**인지
- AI 성능이 **질병의 종류나 인종, 성별에 따라 다르게 평가되었는지**
---
## ⚙️ 연구 방법 – 어떻게 진행했을까?
1. **FDA에 등록된 모든 AI 기기 정보를 모음**
기존 데이터베이스와 직접 수집한 자료를 합쳐서 분석 대상을 추렸어요.
2. **각 기기의 평가 방식 확인**
몇 개 병원에서 테스트했는지, 평가 데이터는 실제 임상 환경과 유사했는지 등을 체크했죠.
3. **사례 연구 – 폐기흉(공기 찬 폐) 진단 AI 테스트**
미국 3개 병원의 엑스레이 데이터를 활용해 AI가 병원마다 성능이 어떻게 달라지는지 실험했습니다.
---
## 📊 연구 결과 및 예시 – 어떤 결과가 나왔을까?
- 130개 중 **97% 이상이 과거 데이터 기반**으로 평가됐고,
**실제 임상 환경에서 직접 테스트한 경우는 거의 없었어요.**
- 특히 **위험도가 높은 AI 기기 54개 모두 전향적(실제 환경 기반) 평가가 없었습니다.**
- **절반 가까이는 테스트에 몇 명의 환자가 참여했는지도 명시 안 돼 있었어요.**
- 사례 실험에서도, AI는 **훈련받은 병원에서는 성능이 좋지만, 다른 병원에서는 성능이 떨어지는** 문제가 있었어요. 예를 들어 NIH 병원에서 훈련한 AI는 NIH 환자에겐 잘 작동했지만, 다른 병원 환자에겐 정확도가 뚝 떨어졌습니다.
---
## 🌍 의미와 영향 – 이 연구가 우리 사회에 주는 메시지
의료 AI는 잠재력이 큰 기술이지만, 아직은 평가와 검증이 충분치 않아 **모든 환자에게 안전하게 사용하기 어려울 수 있어요**. 특히 인종, 성별, 병원 환경에 따라 AI의 성능이 달라질 수 있다는 건 중요한 경고죠.
이 연구는 **더 엄격하고, 다양한 환경에서의 AI 평가가 필요하다**는 걸 강조합니다. 앞으로는:
- 여러 병원에서 테스트된 AI만 사용
- 실제 병원 환경에서 미리 시험해보기
- 다양한 인구집단에서의 성능도 꼭 확인
이런 과정들이 더해져야 의료 AI가 **신뢰받는 진짜 도구**가 될 수 있을 거예요.
NotebookLM
## 안녕하세요! 의료 인공지능, 우리가 알아야 할 것들: FDA 승인 분석 이야기
안녕하세요, 오늘은 우리 삶에 점점 더 가까워지고 있는 **의료 인공지능(AI)**에 대한 흥미로운 연구 이야기를 들려드리려고 합니다. 특히, 미국 식품의약국(FDA)의 승인을 받은 의료 AI 기기들의 평가 과정에 대한 분석인데요, 이 연구를 통해 우리가 앞으로 의료 AI를 어떻게 바라보고 이해해야 할지 함께 생각해 보는 시간을 가져보겠습니다.
### 연구 배경 – 왜 이 연구가 중요했을까요?
최근 몇 년간, 환자를 진단하고 치료하는 데 도움을 주는 **의료 AI 기술**이 빠르게 발전하고 있습니다. 마치 영화에서 보던 장면들이 현실로 다가오는 듯한 느낌인데요. 하지만 이렇게 첨단 기술이 우리 건강과 관련된 분야에 사용될 때, **그 안전성과 신뢰성을 어떻게 확보해야 할까요?** 학계에서는 AI 임상 시험에 대한 가이드라인을 만들기 시작했지만, 시중에 판매되는 의료 AI 기기들이 실제로 어떻게 평가받고 있는지에 대한 명확한 기준은 아직 부족한 실정입니다.
연구진은 이러한 문제의식을 가지고 **FDA의 승인을 받은 의료 AI 기기들의 평가 과정**을 자세히 살펴보았습니다. 과연 이 기기들이 다양한 환자들에게도 **일반적으로 잘 작동하는지**, AI의 흔한 문제점들(예: 특정 데이터에만 잘 맞거나, 예상치 못한 데이터 변화에 취약하거나, 특정 환자 그룹에 불리한 편향성)은 제대로 확인되고 있는지 등을 알아보고자 한 것입니다.
### 연구 목적 – 연구진은 무엇을 알고 싶었을까요?
이 연구를 통해 연구진은 다음과 같은 질문들에 대한 답을 찾고자 했습니다:
* FDA 승인을 받은 의료 AI 기기들은 **다양한 환자 집단**에게도 신뢰할 수 있는 성능을 보여주는가?
* AI 기술의 흔한 **단점들(과적합, 데이터 변화에 대한 취약성, 편향성)**은 평가 과정에서 충분히 측정되고 다루어지고 있는가?
궁극적으로 연구진은 FDA의 의료 AI 기기 평가 과정의 현황을 파악하고, 앞으로 더 **안전하고 효과적인 의료 AI 기술**이 환자들에게 제공될 수 있도록 개선 방안을 제시하고자 했습니다.
### 데이터 또는 재료 설명 – 어떤 ‘재료’들이 사용되었나요?
연구진은 **2015년 1월부터 2020년 12월까지 FDA의 승인을 받은 모든 의료 AI 기기**의 정보를 모아 분석했습니다. FDA 웹사이트에서 공개된 각 기기의 **요약 문서 PDF 파일**을 다운로드하여 AI 관련 키워드를 검색하고, 이를 기존의 두 AI 기기 데이터베이스와 통합하여 **총 130개의 의료 AI 기기 데이터베이스**를 구축했습니다.
더불어, AI 모델이 다양한 환경에서 어떻게 작동하는지 알아보기 위해 **폐렴모야기흉(pneumothorax, collapsed lung) 진단 보조 AI**를 대상으로 **사례 연구(case study)**를 진행했습니다. 이를 위해 미국의 세 개 병원(국립보건원(NIH), 스탠포드 헬스케어(SHC), 베스 이스라엘 디코네스 의료센터(BIDMC))에서 수집된 **실제 흉부 엑스레이 이미지 데이터셋**을 사용했습니다. 이 데이터셋들은 다양한 환자들의 정보를 담고 있어 AI 성능을 다각적으로 평가하는 데 유용합니다. 마치 여러 지역의 환자 사진을 모아놓고 AI에게 병을 찾아보라고 시험하는 것과 같습니다.
### 연구 방법 – 연구는 어떻게 진행되었나요?
연구진은 FDA 요약 문서를 통해 각 의료 AI 기기가 어떻게 평가되었는지에 대한 다양한 정보를 추출했습니다. 여기에는 평가에 참여한 **환자 수**, **평가 기관 수**, 평가가 기기 출시 전 과거 데이터를 이용한 것인지(후향적 연구), 출시 후 실제 사용 데이터를 이용한 것인지(전향적 연구), 그리고 특정 질병 종류나 인구학적 하위 그룹별 성능이 보고되었는지 등이 포함됩니다. 또한, FDA의 위험도 분류 기준에 따라 각 기기의 위험 수준을 1에서 4까지로 나누어 분석했습니다.
폐렴모야기흉 진단 사례 연구에서는, **각 병원의 데이터로 AI 모델을 학습시킨 후, 다른 병원의 데이터로 그 성능을 평가**했습니다. 예를 들어, 스탠포드 병원 데이터로 학습시킨 AI 모델이 다른 두 병원의 엑스레이 사진에서도 폐렴모야기흉을 얼마나 정확하게 찾아내는지 확인한 것입니다. 이는 **AI 모델이 특정 병원의 데이터에만 익숙해져 다른 환경에서는 제대로 작동하지 않을 수 있는지**를 확인하기 위한 중요한 단계입니다.
### 연구 결과 및 예시 – 어떤 결과가 나왔나요?
연구 결과, FDA 승인을 받은 대부분의 의료 AI 기기(130개 중 126개)가 **과거 데이터를 이용한 후향적 연구만을 거쳐 평가**된 것으로 나타났습니다. 특히 위험도가 높은 기기(54개) 중에는 **전향적 연구를 통해 평가된 경우가 전혀 없었습니다**. 이는 AI가 실제 임상 환경에서 어떻게 사용될지, 그리고 환자에게 어떤 영향을 미칠지에 대한 충분한 정보 없이 승인이 이루어질 수 있다는 점을 시사합니다.
또한, 분석 대상 기기 중 **93개(약 72%)는 다기관 평가가 공개적으로 보고되지 않았고**, 평가 기관 수를 보고한 41개 기기 중에서도 상당수가 **소수의 기관(1~2개)**에서만 평가되었습니다. 이는 AI 모델이 **다양한 환자 특성이나 의료 환경에서 얼마나 잘 작동하는지**를 파악하기 어려울 수 있음을 의미합니다. 연구에 포함된 59개 기기(45%)의 보고서에는 **연구에 사용된 환자 수조차 공개되지 않았습니다**.
폐렴모야기흉 사례 연구에서는 **AI 모델이 학습에 사용된 병원의 데이터에서는 높은 성능을 보였지만, 다른 병원의 데이터로 평가했을 때는 성능이 크게 떨어지는 것**을 확인할 수 있었습니다. 예를 들어, A 병원 데이터로 학습한 AI는 A 병원 환자의 엑스레이 사진은 잘 판독했지만, B 병원 환자의 사진에서는 오진율이 높아지는 현상이 나타난 것입니다. 이는 **AI 모델이 특정 병원의 장비, 촬영 방식, 환자 구성 등에 과도하게 맞춰져 다른 환경에서는 일반화되지 못할 수 있음**을 보여줍니다.
### 의미와 영향 – 이 연구가 우리 일상이나 사회에 어떤 영향을 줄 수 있을까요?
이 연구는 현재 의료 AI 기기의 평가 과정에 **개선이 필요하다는 중요한 메시지**를 던져줍니다. 특히, 다음과 같은 점들이 강조됩니다:
* **다양한 환자 집단을 대상으로 하는 다기관 평가**가 더욱 중요합니다. 그래야 AI가 특정 그룹에 편향되지 않고 보편적으로 안전하게 사용될 수 있습니다.
* **실제 임상 환경에서의 AI 활용 결과를 평가하는 전향적 연구**가 확대되어야 합니다. 그래야 AI가 환자의 건강에 실제로 어떤 영향을 미치는지 정확히 파악할 수 있습니다.
* AI 기기 출시 후에도 **지속적인 성능 모니터링과 잠재적인 편향성 검토**가 필요합니다. 예상치 못한 문제점이나 부작용을 빠르게 감지하고 대응할 수 있어야 합니다.
이러한 개선 노력은 결국 **우리 모두가 더욱 안전하고 신뢰할 수 있는 의료 AI 기술의 혜택을 누릴 수 있도록** 기여할 것입니다. 앞으로 의료 현장에서 AI의 역할이 더욱 커질 것으로 예상되는 만큼, 이러한 연구 결과에 관심을 가지고 지켜보는 것이 중요합니다.
grok3
안녕하세요, 여러분! 오늘은 최근 읽은 흥미로운 연구 논문 하나를 소개하려고 해요. 이 논문은 인공지능(AI)이 병원에서 어떻게 사용되는지, 특히 미국에서 AI 의료기기가 어떻게 평가되고 있는지에 대한 이야기인데요. 전문 용어는 최대한 쉽게 풀어서 설명할게요. 자, 시작해볼까요?
---
### 연구 배경 – 이 연구가 왜 필요했나요?
요즘 AI가 우리 삶 곳곳에서 활약하고 있죠. 특히 병원에서는 X-ray 사진을 보고 질병을 찾아내거나 환자 진단을 돕는 AI가 점점 많아지고 있어요. 그런데 문제는, 이런 AI가 정말 믿을 만한지, 모든 환자에게 똑같이 잘 작동하는지 확인하는 과정이 아직 제대로 정해지지 않았다는 거예요. 만약 AI가 잘못된 판단을 내리면 환자에게 큰 영향을 줄 수 있겠죠? 그래서 연구진은 미국에서 AI 의료기기를 승인하는 과정이 얼마나 꼼꼼한지, 어떤 점이 부족한지 알아보려고 이 연구를 시작했어요.
---
### 연구 목적 – 연구진이 알고자 했던 것
연구진은 미국 식품의약국(FDA)이 승인한 AI 의료기기들이 실제로 얼마나 안전하고 믿을 만한지 확인하고 싶었어요. 특히, 이런 기기들이 다양한 사람들에게 잘 맞는지, 병원에서 실제로 사용할 때 문제가 없는지 평가 과정의 세부적인 부분을 분석하고 싶었답니다. 또, AI가 특정 환자 그룹에서 덜 정확하거나 편향된 결과를 낼 가능성도 살펴보고 싶었어요.
---
### 데이터 또는 재료 설명 – 어떤 데이터가 사용되었나요?
이 연구에서는 미국 FDA가 공개한 자료를 사용했어요. FDA는 AI 의료기기를 승인할 때마다 그 기기의 성능, 사용 목적, 테스트 결과 같은 정보를 요약한 문서를 공개하는데요. 연구진은 130개의 FDA 승인 AI 의료기기 관련 문서를 모아서 분석했답니다. 예를 들어, 폐 사진을 보고 폐렴을 찾아내는 AI나 심장 문제를 진단하는 AI 같은 기기들의 데이터가 포함되어 있어요. 쉽게 말해, 이 문서들은 AI가 어떤 일을 하고, 얼마나 잘하는지를 보여주는 성적표 같은 거예요.
---
### 연구 방법 – 연구가 어떻게 진행되었나요?
연구진은 FDA 문서들을 하나씩 꼼꼼히 읽고 정리했어요. 어떤 기기가 어떤 병을 진단하는지, 테스트는 어떻게 했는지, 결과는 어땠는지를 데이터베이스로 만들었죠. 그리고 몇 가지 중요한 질문에 답을 찾아봤어요:
- 이 AI는 다양한 사람들에게 잘 작동하나?
- 테스트 데이터가 충분히 믿을 만한가?
- AI가 병원에서 실제로 쓰일 때 의사와 어떻게 협력하는지 확인했나?
특히, 폐렴 진단 AI를 예로 들어 한 병원에서만 테스트했을 때와 여러 병원에서 테스트했을 때 결과가 어떻게 다른지도 비교해봤어요. 이 과정은 마치 새로 나온 스마트폰을 한 도시에서만 테스트하는 게 아니라 전국에서 써보고 평가하는 것과 비슷하다고 생각하면 돼요.
---
### 연구 결과 및 예시 – 어떤 결과가 나왔나요?
연구 결과, 몇 가지 중요한 사실이 드러났어요:
1. **테스트 부족**: 많은 AI 기기가 한두 개 병원 데이터로만 테스트됐어요. 예를 들어, 폐렴 진단 AI를 한 병원에서만 테스트하면 그 병원 환자들한테는 잘 맞을지 몰라도 다른 병원에서는 성능이 떨어질 수 있다는 거죠. 실제로, 연구진이 폐렴 AI를 여러 병원 데이터로 확인해보니 성능 차이가 꽤 컸어요.
2. **의사와의 협력 미흡**: 대부분 AI는 의사 없이 혼자 테스트됐어요. 하지만 실제 병원에서는 의사가 AI 결과를 보고 판단을 내리잖아요. AI와 의사가 함께 일했을 때 결과가 달라질 수 있는데, 이런 테스트는 거의 없었다는 거예요.
3. **편향 가능성**: AI가 특정 그룹(예: 나이, 성별, 인종)에 덜 정확할 가능성이 있는데, 이런 점을 제대로 확인하지 않은 경우가 많았어요.
쉽게 예를 들어볼게요. 폐렴 진단 AI가 있다고 해봅시다. 이 AI가 한 병원에서 90% 정확도로 폐렴을 찾아냈다고 쳐요. 근데 다른 병원 데이터를 넣어보니 정확도가 70%로 뚝 떨어졌어요. 이건 마치 한 동네에서만 잘 작동하는 내비게이션 앱을 전국에서 쓰려고 하는 것과 비슷한 문제예요.
---
### 의미와 영향 – 이 연구가 우리에게 어떤 영향을 줄까?
이 연구는 우리에게 몇 가지 중요한 메시지를 줘요:
- **더 안전한 AI**: 앞으로 AI 의료기기를 만들 때 더 다양한 사람과 병원 데이터를 사용해서 테스트해야 한다는 걸 알려줬어요. 그래야 모든 환자에게 공평하고 안전한 진단을 줄 수 있죠.
- **의사와 AI의 팀워크**: AI는 의사를 대체하는 게 아니라 도와주는 도구예요. 이 연구는 AI와 의사가 함께 일하는 방식도 테스트해야 한다는 점을 강조했어요. 예를 들어, AI가 X-ray에서 이상 징후를 찾아내면 의사가 그걸 확인하고 최종 판단을 내리는 식으로요.
- **투명성**: FDA가 AI 기기의 성능을 더 자세히 공개하고, 어떤 테스트를 했는지 알기 쉽게 설명하면 환자와 의사 모두 AI를 더 신뢰할 수 있을 거예요.
결국 이 연구는 AI가 병원에서 더 똑똑하고 믿음직한 조력자가 되도록 도와주는 길잡이 역할을 해요. 우리 모두가 더 정확한 진단과 치료를 받을 수 있는 미래를 만들기 위한 첫걸음이죠!
perplexity.ai
# 의료 AI 기기의 평가, 무엇이 문제일까?
## 연구 배경
요즘 의료 분야에서 인공지능(AI)은 환자 진단과 치료를 돕는 중요한 도구로 자리 잡고 있습니다. 하지만, 이런 AI 기기가 실제로 얼마나 믿을 수 있고 안전한지는 명확하지 않습니다. 특히, 미국 식품의약국(FDA)이 승인한 AI 기기들이 실제 환자들에게 사용될 때 어떤 한계가 있는지에 대한 연구는 부족한 상황입니다. 이 연구는 이러한 문제를 해결하기 위해 시작되었습니다.
## 연구 목적
연구진은 FDA가 승인한 의료 AI 기기들이 어떻게 평가되고 있는지 분석하고, 평가 과정에서 나타나는 한계와 문제점을 파악하고자 했습니다. 이를 통해 더 나은 평가 기준과 방법을 제안하려는 것이 이 연구의 목표입니다.
## 데이터 또는 재료 설명
연구진은 2015년부터 2020년까지 FDA가 승인한 130개의 의료 AI 기기를 조사했습니다. 이 기기들은 주로 환자의 X-ray 이미지 분석, 심장 질환 진단 등 다양한 의료 분야에 사용됩니다. 연구진은 FDA가 공개한 승인 문서와 기존 데이터베이스를 활용해 정보를 수집했습니다.
## 연구 방법
연구진은 각 AI 기기가 평가된 방식을 분석했습니다. 예를 들어,
- 몇 명의 환자를 대상으로 테스트했는지
- 테스트가 여러 병원에서 이루어졌는지
- AI가 실제 임상 환경에서 얼마나 잘 작동하는지 확인했는지 등을 조사했습니다.
또한, 특정 사례(예: 폐렴 진단 AI)를 통해 다중 병원 데이터를 사용했을 때와 그렇지 않았을 때의 성능 차이를 비교했습니다.
## 연구 결과 및 예시
### 주요 결과
1. 대부분의 AI 기기(126개)는 과거 데이터를 기반으로 평가되었으며, 실제 임상 환경에서 테스트된 경우는 거의 없었습니다.
2. 130개 중 93개의 기기는 여러 병원에서 테스트되지 않았습니다. 이는 AI가 다양한 환경에서 얼마나 잘 작동하는지 알기 어렵게 만듭니다.
3. 특정 병원 데이터를 사용해 훈련된 AI 모델은 다른 병원의 데이터를 분석할 때 성능이 크게 떨어졌습니다.
### 예시: 폐렴 진단 AI
예를 들어, 한 병원의 데이터를 기반으로 훈련된 AI는 해당 병원에서는 높은 정확도를 보였지만, 다른 병원의 환자 데이터를 분석할 때 정확도가 눈에 띄게 낮아졌습니다. 이는 AI가 특정 환경에만 최적화되어 있다는 것을 보여줍니다.
## 의미와 영향
이 연구는 의료 AI 기기의 평가 방식에 큰 문제점이 있음을 보여줍니다. 특히, 다양한 환경과 인구 집단에서 테스트되지 않은 AI는 실제 환자들에게 신뢰할 수 없는 결과를 제공할 수 있습니다. 따라서, 앞으로는 다중 병원 데이터와 실시간 임상 테스트를 포함한 더 철저한 평가 방식이 필요합니다.
이 연구는 우리가 의료 AI를 더 안전하고 효과적으로 사용할 수 있도록 돕는 중요한 첫걸음입니다. 앞으로 이러한 개선이 이루어진다면, 의료 현장에서 더 많은 사람들이 정확하고 신뢰할 수 있는 도움을 받을 수 있을 것입니다.
![]() |
출처: @ye._.vely618 |
댓글 없음:
댓글 쓰기