이전 포스팅에서는 Ion torrent 데이터에 대해서 알아보았으니 이번에는 일루미나 데이터는 과연 괜찮은지 한번 알아보도록 하겠습니다.
그건 그렇고 이전 포스팅하고 꽤 오랜만에 하네요;;
Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform의 제목으로 amplicon 패널을 사용하여 일루미나 시퀀서의 편향과 에러에 대해서 한번 확인해봤다고 합니다.
DOI: https://doi.org/10.1093/nar/gku1341
이번에도 AI(Bing의 copilot입니다.)의 도움을 한번 받아보았습니다!!!
DOI: https://doi.org/10.1093/nar/gku1341
이번에도 AI(Bing의 copilot입니다.)의 도움을 한번 받아보았습니다!!!
프롬프트
The following URL is a paper confirming the biases and errors of the Illumina MiSeq sequencer using the Amplicon panel, and the title is "Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform."
https://doi.org/10.1093/nar/gku1341I am planning to organize and post the contents of this paper on my blog. Please summarize the problems that may arise when using the Amplicon method using Illumina MiSeq. It is said that the data used in the paper was 16S rRNA data. If there was an error, please explain how you corrected the error and what method you used. Also, if there is an error in the data, please explain how to efficiently handle it. Please write the draft to be posted on the blog in Korean.
안녕하세요. 오늘은 일루미나 MiSeq 시퀀서를 사용하여 앰플리콘 패널을 이용한 시퀀싱에 대한 편향과 오류를 확인하는 논문을 소개하고자 합니다. 논문의 제목은 "Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform"이고, 다음 URL에서 확인하실 수 있습니다.
https://doi.org/10.1093/nar/gku1341
이 논문에서는 16S rRNA 데이터를 사용하여 앰플리콘 방법을 이용한 시퀀싱의 문제점을 분석하였습니다. 앰플리콘 방법은 특정 DNA 영역을 증폭하여 시퀀싱하는 방법으로, 다양한 생물학적 응용에 사용됩니다. 그러나 이 방법에는 여러 가지 편향과 오류가 발생할 수 있습니다. 예를 들어, 증폭 과정에서 PCR 편향이나 증폭 돌연변이가 발생할 수 있고, 시퀀싱 과정에서는 인덱스 점프나 인덱스 오염, 품질 저하 등의 문제가 있을 수 있습니다.
이러한 편향과 오류는 시퀀싱 결과의 정확도와 신뢰도에 영향을 미칠 수 있으므로, 적절한 보정과 검증이 필요합니다. 이 논문에서는 일루미나 MiSeq 플랫폼을 사용하여 앰플리콘 시퀀싱을 수행한 데이터를 분석하고, 편향과 오류의 원인과 영향을 평가하였습니다. 또한, 편향과 오류를 줄이기 위한 몇 가지 방법을 제안하였습니다.
논문에서 사용한 데이터는 16S rRNA 데이터로, 박테리아의 다양성과 상대적 농도를 파악하기 위해 널리 사용되는 마커 유전자입니다. 16S rRNA 데이터는 앰플리콘 방법으로 쉽게 증폭할 수 있지만, 동시에 여러 가지 편향과 오류에 노출될 수 있습니다. 예를 들어, 16S rRNA 유전자는 다른 박테리아 간에 유사도가 높기 때문에, 인덱스 점프나 인덱스 오염이 발생하면 잘못된 분류가 될 수 있습니다. 또한, 16S rRNA 유전자는 GC 함량이 다양하기 때문에, PCR 편향이나 증폭 돌연변이가 발생하면 잘못된 상대적 농도가 산출될 수 있습니다.
논문에서는 이러한 편향과 오류를 검출하고 보정하기 위해 여러 가지 방법을 사용하였습니다. 예를 들어, 인덱스 점프나 인덱스 오염을 줄이기 위해, 인덱스 디자인을 최적화하고, 인덱스 프라이머를 제거하는 단계를 추가하였습니다. 또한, PCR 편향이나 증폭 돌연변이를 줄이기 위해, PCR 사이클 수를 최소화하고, 증폭 조건을 표준화하였습니다. 그리고, 시퀀싱 품질을 향상시키기 위해, 품질 저하가 발생하는 시퀀싱 끝부분을 잘라내고, 품질 점수를 기준으로 필터링하였습니다.
이렇게 보정된 데이터를 사용하여, 박테리아의 다양성과 상대적 농도를 분석하였습니다. 그 결과, 보정 전과 후의 데이터에서는 박테리아의 종류와 비율에 차이가 있음을 확인하였습니다. 이는 앰플리콘 시퀀싱에 발생하는 편향과 오류가 데이터 해석에 영향을 미칠 수 있음을 보여줍니다. 따라서, 앰플리콘 시퀀싱을 수행할 때는 편향과 오류를 최소화하고, 보정하고, 검증하는 과정이 필수적임을 강조하고자 합니다.
이 논문에서는 편향과 오류를 줄이기 위한 방법 외에도, 발생한 편향과 오류를 해결하기 위한 방법도 제시하였습니다. 예를 들어, 인덱스 점프나 인덱스 오염이 발생한 경우에는, 인덱스 정보를 이용하여 잘못된 분류를 수정하는 방법이 있습니다. 또한, PCR 편향이나 증폭 돌연변이가 발생한 경우에는, GC 보정이나 돌연변이 보정을 수행하는 방법이 있습니다. 이러한 방법들은 데이터의 정확도와 신뢰도를 더욱 높일 수 있습니다.
이상으로, 일루미나 MiSeq 시퀀서를 사용하여 앰플리콘 패널을 이용한 시퀀싱에 대한 편향과 오류를 확인하는 논문에 대해 소개하였습니다. 앰플리콘 시퀀싱은 매우 유용한 방법이지만, 동시에 주의가 필요한 방법이기도 합니다. 앰플리콘 시퀀싱을 수행하시는 분들께서는 이 논문을 참고하여, 데이터의 정확도와 신뢰도를 높이시기 바랍니다. 감사합니다.
라고 합니다.
좀 같은 말 늘려서 빙빙 돌려막는 느낌이 좀 들긴하지만....
그래도 짧지 않은 글을 작성해주니깐 좋은것 같습니다. :)
출처: @ye._.vely618
댓글 없음:
댓글 쓰기