레이블이 누가누가 잘하나인 게시물을 표시합니다. 모든 게시물 표시
레이블이 누가누가 잘하나인 게시물을 표시합니다. 모든 게시물 표시

수요일, 7월 20, 2022

Long Read 조립은 누가누가 잘하나

Piroplasm를 나노포어를 사용하여 genome project를 진행했고 나노포어를 활용한 assembler들에 대한 성능 비교 논문 되겠습니다.


제목은 Systematic Comparison of the Performances of De Novo Genome Assemblers for Oxford Nanopore Technology Reads From Piroplasm

doi는 https://doi.org/10.3389/fcimb.2021.696669


piroplasm이 몬지는 모르겠으나 일단 그렇게 엄청나게 복잡하지는 않은 원생동물이나 사람이나 동물들에게 질병을 일으키는 녀석 되는 것 같습니다. funding중에 동물 전염병 및 인수공통전염병 관련 프로그램이 있는것으로 보아하니...


여튼 중요한건 nanopore로 읽어낸 서열을 사용하여 genome 조립할때 어떤 어떤 조립 프로그램이 제일 좋은지를 검토해본 것이니 OLC (Over-Layout-Consensus)나 전통적인 de-Brujin graph, string graph-based 방법 등등의 NECAT, Canu, wtdbg2, Miniasm, Smartdenovo, FlyeNextDenovo, Shasta와 같이 일반적으로 long-read에 사용하는 assembler들을 비교 테스트 하였다고 합니다.

대신 여기서는 assembly의 정확도와 함께 CPU 사용량, 메모리 사용량, 분석시간 사용방법 등등에 대해서도 함께 평가했다고 합니다. 참 바람직한 태도라고 봅니다. 모든 연구팀들이 그래픽카드 4개꼽히고 6T 메모리의 4U 서버를 가지고있는것은 아니니 말입니다.


실험 방법은 prioplasm free한 양 2마리(??)에게 prioplasm을 감염시켜 잘 배양(??)시킨 다음 Qiagen 사용 prep kit을 가지고 DNA 추출하고 PromethION으로 시퀀싱하였고 데이터 셋트에 따른 assembly 결과 평가를 위해 6가지 생산량 (약 15x, 30x, 50x, 70x, 100x, 120x)의 셋트를 만들었다고 합니다. 그리고 추가적(aka error correction)으로 (일루미나와 특허 소송에서 승리한) MGI로도 시퀀싱을 하였다고 합니다.


여튼 결과적으로

N50과 contig개수(적을수록 좋음)는 생산량과 밀접하고,
분석 시간은 생산량이 많으면 어떤 assembler를 사용하던 길어졌고,
polishing은 안하는것보다 하는것이 좋은것 같고 각 tool의 장단점은 Figure3에 방사형 그래프로 이쁘게 표현하였으니 한번 참고하시면 좋을것 같습니다.

그래서 Miniasm, Flye, wtdbg2는 그닥 좋은 선택지는 아닌것 같고 평균 커버리지가 30x 이상 확보된다면 NECAT, Canu, NextDenovo, Smartdenovo가 더 나은것 같다 정도 되겠습니다.

(사실 위의 tool들을 실행시키려면 평균 30x 이상은 있어야 작동을 합니다. 안그러면 작동안하던지 말도안되는 결과들을 뱉어내곤 합니다.)


그리고 시간이 충분했는지 각 assembler 결과들을 병합/후처리하는 작업을 하여 더 나은 assembly 결과를 보여주는지 테스트 했고 몇몇 조합에서 결과물이 향상된것을 확인했다는데... dramatically 좋은 결과는 보여주지 않은것 같았습니다. 

만약 병합/후처리하는 결과가 좋았다면 논문 결과가 single assembler 쓰지말고 ensemble방법을 추천드립니다라고 했었을테니 말이죠.. 



출처: @candyz_hyojung